Detail View

Energy shell structure in a dielectric elliptic microcavity
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Yi, Chang-Hwan -
dc.contributor.author Yu, Hyeon-Hye -
dc.contributor.author Lee, Ji-Won -
dc.contributor.author Kim, Ji-Hwan -
dc.contributor.author Kim, Chil-Min -
dc.date.available 2017-07-11T05:37:04Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-01-06 -
dc.identifier.issn 1539-3755 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2741 -
dc.description.abstract An energy shell structure depending on eccentricity is analyzed in a dielectric elliptic microcavity. Through the analysis, it is explicated that the energy shell structure is governed by classical constant actions of periodic orbits. For clarification, the relation between dominances of the periodic orbits and bifurcation behaviors are obtained and the length spectra based on eigenvalues computed by a numerical method are compared with the exact lengths of the periodic orbits obtained by analytic calculations. By matching effective wave numbers obtained from the periodic orbit lengths to exact wave numbers of stationary states in closed and open cavities, we find deviations provoked from the openness. We show that these deviations are caused by additional phase factors in the Einstein-Brillouin-Keller quantization. © 2016 American Physical Society. -
dc.publisher American Physical Society -
dc.title Energy shell structure in a dielectric elliptic microcavity -
dc.type Article -
dc.identifier.doi 10.1103/PhysRevE.93.012203 -
dc.identifier.scopusid 2-s2.0-84954496754 -
dc.identifier.bibliographicCitation Yi, Chang-Hwan. (2016-01-06). Energy shell structure in a dielectric elliptic microcavity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 93(1). doi: 10.1103/PhysRevE.93.012203 -
dc.subject.keywordPlus ADIABATIC INVARIANTS -
dc.subject.keywordPlus Analytic Calculations -
dc.subject.keywordPlus Bifurcation Behavior -
dc.subject.keywordPlus BILLIARD -
dc.subject.keywordPlus CAVITIES -
dc.subject.keywordPlus Chaos Theory -
dc.subject.keywordPlus EIGENFREQUENCIES -
dc.subject.keywordPlus Eigenvalues and Eigenfunctions -
dc.subject.keywordPlus Einstein-Brillouin-Keller -
dc.subject.keywordPlus emISSION -
dc.subject.keywordPlus Energy Shells -
dc.subject.keywordPlus FINITE DOMAIN -
dc.subject.keywordPlus Microcavities -
dc.subject.keywordPlus Numerical Methods -
dc.subject.keywordPlus PERIODIC ORBIT THEORY -
dc.subject.keywordPlus Periodic Orbits -
dc.subject.keywordPlus Periodic Structures -
dc.subject.keywordPlus Phase Factor -
dc.subject.keywordPlus QUANTIZATION -
dc.subject.keywordPlus RESONANCES -
dc.subject.keywordPlus Stationary State -
dc.subject.keywordPlus WAVE-EQUATION -
dc.subject.keywordPlus Wave Numbers -
dc.citation.number 1 -
dc.citation.title Physical Review E: Statistical, Nonlinear, and Soft Matter Physics -
dc.citation.volume 93 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김칠민
Kim, Chil-Min김칠민

Department of Emerging Materials Science

read more

Total Views & Downloads