Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Hojeong -
dc.contributor.author Heckman, C. J. -
dc.date.available 2017-07-11T05:43:50Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-11 -
dc.identifier.issn 0304-3940 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2816 -
dc.description.abstract It has long been known that primary neurons in the brain and spinal cord exhibit very distinctive dendritic structures. However, it remains unclear whether dendritic processing for signal propagation and channel activation over dendrites is a function of the cell type-specific dendritic structure. By applying an extended analysis of signal attenuation for the physiological distributions of synaptic inputs and active channels on dendritic branches, we first demonstrate that regardless of their specific structure, all anatomically reconstructed models of primary neurons display a similar pattern of directional signal attenuation and locational channel activation over their dendrites. Then, using a novel modeling approach that allows direct comparison of the anatomically reconstructed primary neurons with their reduced models that exclusively retain anatomical dendritic signaling without being associated with structural specificity, we show that the reduced model can accurately predict dendritic excitability of the anatomical model in both passive and active mode. These results indicate that the directional signaling, locational excitability and their relationship are foundational features of dendritic processing that are independent of the cell type-specific structure across primary neurons. © 2015 Elsevier Ireland Ltd. -
dc.language English -
dc.publisher Elsevier Ltd -
dc.title Foundational dendritic processing that is independent of the cell type-specific structure in model primary neurons -
dc.type Article -
dc.identifier.doi 10.1016/j.neulet.2015.10.017 -
dc.identifier.scopusid 2-s2.0-84945578807 -
dc.identifier.bibliographicCitation Neuroscience Letters, v.609, pp.203 - 209 -
dc.subject.keywordAuthor Primary neurons -
dc.subject.keywordAuthor Dendritic structure -
dc.subject.keywordAuthor Signal propagation -
dc.subject.keywordAuthor Dendritic excitability -
dc.subject.keywordAuthor Reduced modelling -
dc.subject.keywordPlus ALPHA-MOTONEURONS -
dc.subject.keywordPlus Anatomic Model -
dc.subject.keywordPlus Animal Cell -
dc.subject.keywordPlus Article -
dc.subject.keywordPlus Cell Structure -
dc.subject.keywordPlus Controlled Study -
dc.subject.keywordPlus Dendrite -
dc.subject.keywordPlus Dendritic Excitability -
dc.subject.keywordPlus Dendritic Structure -
dc.subject.keywordPlus Electric Potential -
dc.subject.keywordPlus MODEL -
dc.subject.keywordPlus Nerve Cell -
dc.subject.keywordPlus Nerve Cell Excitability -
dc.subject.keywordPlus Nerve Cell Membrane Potential -
dc.subject.keywordPlus Neuroanatomy -
dc.subject.keywordPlus Nonhuman -
dc.subject.keywordPlus POTENTIALS -
dc.subject.keywordPlus Primary Neurons -
dc.subject.keywordPlus Priority Journal -
dc.subject.keywordPlus Pyramidal Nerve Cell -
dc.subject.keywordPlus Rat -
dc.subject.keywordPlus Reduced Modelling -
dc.subject.keywordPlus Signal Propagation -
dc.subject.keywordPlus Signal Transduction -
dc.subject.keywordPlus Spinal Cord Motoneuron -
dc.subject.keywordPlus Spinal Cord Nerve Cell -
dc.subject.keywordPlus Synaptic Transmission -
dc.subject.keywordPlus VOLTAGE ATTENUATION -
dc.citation.endPage 209 -
dc.citation.startPage 203 -
dc.citation.title Neuroscience Letters -
dc.citation.volume 609 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Biotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE