Detail View

Few Scanline Deep Learning Network for Ultrasound Image Segmentation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 황재윤 -
dc.contributor.author Minji Kang -
dc.date.accessioned 2023-03-22T19:57:16Z -
dc.date.available 2025-02-28T06:00:31Z -
dc.date.issued 2023 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45745 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000657134 -
dc.description Ultrasound, Wearable System, Segmentation, 초음파, 웨어러블 시스템, 분할 -
dc.description.tableofcontents 1. INTRODUCTION
1.1 Motivation 1
1.2 Background 3
1.2.1 The physics of ultrasound 3
1.2.2 Ultrasound imaging 5
1.2.3 Ultrasound wearable system 6
1.2.4 Deep learning technology 7
1.2.5 Generative Adversarial Network (GAN) 8
1.2.6 Segmentation model 10
1.3 Preliminary Study 13
1.3.1 Correlation between bladder volume and posture 13
1.3.2 Estimation of bladder signal in ultrasound A-mode 15

2. METHODS AND MATERIALS
2.1 Description of the Proposed Bladder Wearable System 17
2.2 Data Acquisition 19
2.2.1 Clinical data acquisition with commercial ultrasound equipment 19
2.2.2 Phantom data acquisition with a single-element transducer 22
2.3 Description of the Bladder Estimation Algorithm 26
2.3.1 Preparation of a paired image dataset 26
2.3.2 Deep learning experiment setup 28
2.3.2.1 GAN (Image-to-image translation) 29
2.3.2.2 Segmentation model (U-Net) 29
2.4 Quantitative Evaluation of Algorithm 30



3. RESULTS AND DISCUSSIONS
3.1 Generated a Larger Number of Scanlines Image 31
3.2 Segmented Bladder Ultrasound Image 34
3.3 Single-element Transducer Experiment Result 41

4. CONCLUSION

REFERENCES 46

요 약 문 49
-
dc.format.extent 62 -
dc.language eng -
dc.publisher DGIST -
dc.title Few Scanline Deep Learning Network for Ultrasound Image Segmentation -
dc.title.alternative 적은 수의 스캔라인을 이용한 초음파 이미지 분할 딥러닝 네트워크 -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000657134 -
dc.description.degree Master -
dc.contributor.department Department of Electrical Engineering and Computer Science -
dc.identifier.bibliographicCitation Minji Kang. (2023). Few Scanline Deep Learning Network for Ultrasound Image Segmentation. doi: 10.22677/THESIS.200000657134 -
dc.contributor.coadvisor Jin Ho Chang -
dc.date.awarded 2023-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.IM 강38 202302 -
dc.date.accepted 2023-03-21 -
dc.contributor.alternativeDepartment 전기전자컴퓨터공학과 -
dc.subject.keyword Ultrasound -
dc.subject.keyword Wearable System -
dc.subject.keyword Segmentation -
dc.subject.keyword 초음파 -
dc.subject.keyword 웨어러블 시스템 -
dc.subject.keyword 분할 -
dc.contributor.affiliatedAuthor Minji Kang -
dc.contributor.affiliatedAuthor Jae Youn Hwang -
dc.contributor.affiliatedAuthor Jin Ho Chang -
dc.contributor.alternativeName 강민지 -
dc.contributor.alternativeName Jae Youn Hwang -
dc.contributor.alternativeName 장진호 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads