Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Jungeun -
dc.contributor.author Lee, Hyeonsoo -
dc.contributor.author Bak, Cheol -
dc.contributor.author Hong, Youngsun -
dc.contributor.author Joung, Daeha -
dc.contributor.author Ko, Jeong Beom -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Kim, Chanhoon -
dc.date.accessioned 2023-05-30T10:10:18Z -
dc.date.available 2023-05-30T10:10:18Z -
dc.date.created 2023-05-04 -
dc.date.issued 2023-12 -
dc.identifier.issn 2311-6706 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45901 -
dc.description.abstract Thick electrodes can substantially enhance the overall energy density of batteries. However, insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries, resulting in battery performance deterioration with a reduced capacity. Here, we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries. Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders, considering physicochemical properties such as mechanical properties and adhesion. The introduction of abundant sulfonate groups of binders (i) allows fast and sufficient electrolyte wetting, and (ii) improves ionic conduction in thick electrodes, enabling a significant increase in reversible capacities under various current densities. Further, the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes. Overall, our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.[Figure not available: see fulltext.] © 2023, The Author(s). -
dc.language English -
dc.publisher Springer Science and Business Media B.V. -
dc.title Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries -
dc.type Article -
dc.identifier.doi 10.1007/s40820-023-01072-y -
dc.identifier.scopusid 2-s2.0-85152571718 -
dc.identifier.bibliographicCitation Nano-Micro Letters, v.15, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Aqueous zinc-ion batteries -
dc.subject.keywordAuthor High areal capacity -
dc.subject.keywordAuthor Hydrophilic binder -
dc.subject.keywordAuthor Sulfonation -
dc.subject.keywordAuthor Thick electrodes -
dc.subject.keywordPlus ION -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus DISSOLUTION -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus MEMBRANES -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus ACID -
dc.subject.keywordPlus PVDF -
dc.citation.number 1 -
dc.citation.title Nano-Micro Letters -
dc.citation.volume 15 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE