Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Dae Hwan -
dc.contributor.author Lim, Seyeong -
dc.contributor.author Kim, Chanhyeok -
dc.contributor.author Lee, Han Uk -
dc.contributor.author Chung, Dasol -
dc.contributor.author Choi, Yelim -
dc.contributor.author Choi, Jongmin -
dc.contributor.author Kim, Younghoon -
dc.contributor.author Cho, Sung Beom -
dc.contributor.author Kim, Hong Il -
dc.contributor.author Park, Taiho -
dc.date.accessioned 2023-06-09T16:10:27Z -
dc.date.available 2023-06-09T16:10:27Z -
dc.date.created 2023-04-13 -
dc.date.issued 2023-03 -
dc.identifier.issn 2380-8195 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45979 -
dc.description.abstract The dominant hole transport material (HTM) used in perovskite quantum dot solar cells (PQD-SCs) is a Spiro-OMeTAD, which inevitably requires doping systems to increase charge mobility. However, the use of deliquescent dopants leads to the degradation of PQD-SCs, necessitating the development of efficient dopant-free HTMs for their commercialization. Here, we designed three types of dopant-free HTMs: Asy-PDTS, Asy-PSDTS, and Asy-PSeDTS. We apply chalcogenide-based fluorinated benzothiadiazole as a rigid segment acceptor unit to generate an effective charge hopping channel, compensating for the impaired electrical property through side chain engineering. The rigid segment is constructed into favorable planar structures of face-to-face stacking by a conformation-locking approach via chalcogenide-fluorine noncovalent interactions (S···F and Se···F). The optimized device using Asy-PSeDTS achieved 15.2% power conversion efficiency (PCE) and maintained 80% of the initial PCE after 40 days, which is the highest PCE and stability among dopant-free HTM-based PQD-SCs so far. © 2023 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Tailoring Rigid Segments in Dopant-Free Polymeric Hole Transport Materials for Perovskite Quantum Dot Solar Cells -
dc.type Article -
dc.identifier.doi 10.1021/acsenergylett.3c00211 -
dc.identifier.wosid 000955427400001 -
dc.identifier.scopusid 2-s2.0-85151274354 -
dc.identifier.bibliographicCitation ACS Energy Letters, v.8, no.4, pp.1839 - 1847 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus IMPACT -
dc.subject.keywordPlus ORDER -
dc.citation.endPage 1847 -
dc.citation.number 4 -
dc.citation.startPage 1839 -
dc.citation.title ACS Energy Letters -
dc.citation.volume 8 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Chemical & Energy Materials Engineering (CEME) Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE