Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Donghoon -
dc.contributor.author Kim, Minsoo -
dc.contributor.author Reidt, Steffen -
dc.contributor.author Han, Hyeon -
dc.contributor.author Baghizadeh, Ali -
dc.contributor.author Zeng, Peng -
dc.contributor.author Choi, Hongsoo -
dc.contributor.author Puigmartí-Luis, Josep -
dc.contributor.author Trassin, Morgan -
dc.contributor.author Nelson, Bradley J. -
dc.contributor.author Chen, Xiang-Zhong -
dc.contributor.author Pané, Salvador -
dc.date.accessioned 2023-07-04T18:40:15Z -
dc.date.available 2023-07-04T18:40:15Z -
dc.date.created 2023-03-15 -
dc.date.issued 2023-02 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46104 -
dc.description.abstract The shape recovery ability of shape-memory alloys vanishes below a critical size (~50 nm), which prevents their practical applications at the nanoscale. In contrast, ferroic materials, even when scaled down to dimensions of a few nanometers, exhibit actuation strain through domain switching, though the generated strain is modest (~1%). Here, we develop freestanding twisted architectures of nanoscale ferroic oxides showing shape-memory effect with a giant recoverable strain (>8%). The twisted geometrical design amplifies the strain generated during ferroelectric domain switching, which cannot be achieved in bulk ceramics or substrate-bonded thin films. The twisted ferroic nanocomposites allow us to overcome the size limitations in traditional shape-memory alloys and open new avenues in engineering large-stroke shape-memory materials for small-scale actuating devices such as nanorobots and artificial muscle fibrils. © 2023. The Author(s). -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Shape-memory effect in twisted ferroic nanocomposites -
dc.type Article -
dc.identifier.doi 10.1038/s41467-023-36274-w -
dc.identifier.scopusid 2-s2.0-85147893328 -
dc.identifier.bibliographicCitation Nature Communications, v.14, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus DEFORMATION -
dc.subject.keywordPlus ELECTRON -
dc.subject.keywordPlus STRAIN -
dc.subject.keywordPlus ALLOYS -
dc.subject.keywordPlus FERROELECTRIC DOMAIN-STRUCTURES -
dc.citation.number 1 -
dc.citation.title Nature Communications -
dc.citation.volume 14 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-Micro Robotics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE