Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hyun, Gayea -
dc.contributor.author Park, Mihui -
dc.contributor.author Bae, Gwangmin -
dc.contributor.author Chung, Jong-woan -
dc.contributor.author Ham, Youngjin -
dc.contributor.author Cho, Seonyong -
dc.contributor.author Jung, Seungwon -
dc.contributor.author Kim, Suhwan -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Kang, Yong-Mook -
dc.contributor.author Jeon, Seokwoo -
dc.date.accessioned 2023-08-24T17:40:22Z -
dc.date.available 2023-08-24T17:40:22Z -
dc.date.created 2023-08-17 -
dc.date.issued 2023-12 -
dc.identifier.issn 1616-301X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46321 -
dc.description.abstract The reaction kinetics at a triple-phase boundary (TPB) involving Li+, e−, and O2 dominate their electrochemical performances in Li–O2 batteries. Early studies on catalytic activities at Li+/e−/O2 interfaces have enabled great progress in energy efficiency; however, localized TPBs within the cathode hamper innovations in battery performance toward commercialization. Here, the effects of homogenized TPBs on the reaction kinetics in air cathodes with structurally designed pore networks in terms of pore size, interconnectivity, and orderliness are explored. The diffusion fluxes of reactants are visualized by modeling, and the simulated map reveals evenly distributed reaction areas within the periodic open structure. The 3D air cathode provides highly active, homogeneous TPBs over a real electrode scale, thus simultaneously achieving large discharge capacity, unprecedented energy efficiency, and long cyclability via mechanical/electrochemical stress relaxation. Homogeneous TPBs by cathode structural engineering provide a new strategy for improving the reaction kinetics beyond controlling the intrinsic properties of the materials. © 2023 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Unraveling the Significance of Li+/e−/O2 Phase Boundaries with a 3D-Patterned Cu Electrode for Li–O2 Batteries -
dc.type Article -
dc.identifier.doi 10.1002/adfm.202303059 -
dc.identifier.wosid 001040679000001 -
dc.identifier.scopusid 2-s2.0-85166218698 -
dc.identifier.bibliographicCitation Advanced Functional Materials, v.33, no.49 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor 3D microstructures -
dc.subject.keywordAuthor electrode structural engineering -
dc.subject.keywordAuthor Li-O-2 batteries -
dc.subject.keywordAuthor Li plus -
dc.subject.keywordAuthor e- -
dc.subject.keywordAuthor O-2 phase boundaries -
dc.subject.keywordAuthor porous electrodes -
dc.subject.keywordPlus MORPHOLOGY -
dc.subject.keywordPlus REDUCTION -
dc.subject.keywordPlus CATHODE ARCHITECTURE -
dc.subject.keywordPlus RATE CAPABILITY -
dc.subject.keywordPlus LI2O2 -
dc.subject.keywordPlus MICROSCOPY -
dc.subject.keywordPlus MECHANISM -
dc.citation.number 49 -
dc.citation.title Advanced Functional Materials -
dc.citation.volume 33 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE