Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Dohwan -
dc.contributor.author Lee, Hyobin -
dc.contributor.author Roh, Youngjoon -
dc.contributor.author Lee, Jong Jun -
dc.contributor.author Song, Jihun -
dc.contributor.author Dzakpasu, Cyril Bubu -
dc.contributor.author Kang, Seok Hun -
dc.contributor.author Choi, Jaecheol -
dc.contributor.author Kim, Dong Hyeon -
dc.contributor.author Hah, Hoe Jin -
dc.contributor.author Cho, Kuk Young -
dc.contributor.author Lee, Young-Gi -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2023-12-13T11:40:23Z -
dc.date.available 2023-12-13T11:40:23Z -
dc.date.created 2023-12-11 -
dc.date.issued 2024-01 -
dc.identifier.issn 1614-6832 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46647 -
dc.description.abstract A thin but robust solid electrolyte layer is crucial for realizing the theoretical energy density of all-solid-state batteries (ASSBs) beyond state-of-the-art Li-ion batteries (LIBs). This study proposes a simple but practical strategy for fabricating thin solid electrolyte membranes using 5-µm perforated polyethylene separators with 35% open areas as the supporting component, which ensures mechanical robustness for commercial-level cell assembly. The thickness of this frame-based solid electrolyte (f-SE) membrane can be reduced to ≈45µm, even after coating the Li6PS5Cl (LPSCl) solid electrolyte composite. Despite a slightly lower ionic conductivity compared to that of thick LPSCl pellets, the f-SE membranes show high conductance and low overpotential in Li||Li symmetric cells. Their incorporation into LiNi0.7Co0.15Mn0.15O2 full cells increases the reversible capacity and rate capability compared to those of cells with conventional LPSCl pellets. The f-SE membrane cells exhibit excellent cycling stability over 250 cycles, while maintaining high-capacity retention and Coulombic efficiency. Notably, the f-SE membranes significantly increase the energy density of ASSBs (314Whkg−1), exceeding the values reported for sulfide-based cells. These results highlight the crucial role of f-SE membranes in improving the mechanical properties and energy density of ASSBs, thereby contributing to the development of next-generation Li battery technologies. © 2023 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Thin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries -
dc.type Article -
dc.identifier.doi 10.1002/aenm.202302596 -
dc.identifier.wosid 001100571400001 -
dc.identifier.scopusid 2-s2.0-85176268168 -
dc.identifier.bibliographicCitation Advanced Energy Materials, v.14, no.2 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor all-solid-state batteries -
dc.subject.keywordAuthor solid electrolyte membranes -
dc.subject.keywordAuthor sulfides -
dc.subject.keywordAuthor thin membranes -
dc.subject.keywordPlus LITHIUM METAL ANODES -
dc.subject.keywordPlus HIGH-ENERGY DENSITY -
dc.subject.keywordPlus POLYETHYLENE SEPARATORS -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus DENDRITE -
dc.subject.keywordPlus GROWTH -
dc.citation.number 2 -
dc.citation.title Advanced Energy Materials -
dc.citation.volume 14 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials & Systems LAB 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE