Detail View

Mitigating Noise in Ensemble Classification with Real-Valued Base Functions
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Ben-Hur, Yuval -
dc.contributor.author Goren, Asaf -
dc.contributor.author Klang, Da El -
dc.contributor.author Kim, Yongjune -
dc.contributor.author Cassuto, Yuval -
dc.date.accessioned 2023-12-26T18:13:08Z -
dc.date.available 2023-12-26T18:13:08Z -
dc.date.created 2022-09-08 -
dc.date.issued 2022-06-30 -
dc.identifier.isbn 9781665421591 -
dc.identifier.issn 2157-8117 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46825 -
dc.description.abstract In data-intensive applications, it is advantageous to perform some partial processing close to the data, and communicate to a central processor the partial results instead of the data itself. When the communication medium is noisy, one must mitigate the resulting degradation in computation quality. We study this problem for the setup of binary classification performed by an ensemble of functions communicating real-valued confidence levels. We propose a noise-mitigation solution that works by optimizing the aggregation coefficients at the central processor. Toward that, we formulate a post-training gradient algorithm that minimizes the error probability given the dataset and the noise parameters. We further derive lower and upper bounds on the optimized error probability, and show empirical results that demonstrate the enhanced performance achieved by our scheme on real data. © 2022 IEEE. -
dc.language English -
dc.publisher IEEE Information Theory Society -
dc.relation.ispartof IEEE International Symposium on Information Theory - Proceedings -
dc.title Mitigating Noise in Ensemble Classification with Real-Valued Base Functions -
dc.type Conference Paper -
dc.identifier.doi 10.1109/ISIT50566.2022.9834480 -
dc.identifier.wosid 001254261902073 -
dc.identifier.scopusid 2-s2.0-85136244767 -
dc.identifier.bibliographicCitation Ben-Hur, Yuval. (2022-06-30). Mitigating Noise in Ensemble Classification with Real-Valued Base Functions. 2022 IEEE International Symposium on Information Theory, ISIT 2022, 2279–2284. doi: 10.1109/ISIT50566.2022.9834480 -
dc.identifier.url https://web.archive.org/web/20220701041302/https://isit2022.edas.info/web/isit2022/program.html -
dc.citation.conferenceDate 2022-06-26 -
dc.citation.conferencePlace FI -
dc.citation.conferencePlace Espoo -
dc.citation.endPage 2284 -
dc.citation.startPage 2279 -
dc.citation.title 2022 IEEE International Symposium on Information Theory, ISIT 2022 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads