Detail View

Robotic Skin Mimicking Human Skin Layer and Pacinian Corpuscle for Social Interaction
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Yang, Min Jin -
dc.contributor.author Park, Kyungseo -
dc.contributor.author Kim, Won Dong -
dc.contributor.author Kim, Jung -
dc.date.accessioned 2024-01-05T19:10:12Z -
dc.date.available 2024-01-05T19:10:12Z -
dc.date.created 2024-01-05 -
dc.date.issued 2024-08 -
dc.identifier.issn 1083-4435 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/47587 -
dc.description.abstract Humans sense and interpret touches on their skin for social interaction. Similarly, robotic systems with human-like robotic skin can intuitively interact with humans. Therefore, many tactile sensors have been developed, but their excessive sensing elements, narrow sensing bandwidth, and fragility limit their applications as robotic skin. This article proposes a robotic skin structure that mimics the human skin layer and Pacinian corpuscle using a textured resilient fabric, a uniquely structured airmesh, and encapsulated microphones. Furthermore, functions such as tactile stimulus encoding, tactile stimulus dispersion, elastomechanical properties, and wide sensitivity bandwidth are mimicked. The developed skin identifies tactile locations and patterns using a small number of sensing nodes and algorithms that interpret tactile sensations. These include passive acoustic tomography to localize touch, signal intensities map, and spectrogram to encode spatiotemporal characteristics of touch, and convolutional neural network to decode and classify touch. As a result, the algorithms localized tactile stimulus with a mean error of 1.8 cm and classified touch into nine classes with an accuracy of 93.3%. Furthermore, the developed robotic skin has no rigid material and employs a few sensing nodes, thus easily accommodating large nonplanar surfaces. The skin was implemented on a robotic arm to demonstrate a physical human–robot interaction and on a vertically cylindrical surface of similar size to a social robot to demonstrate the scaling up to larger systems with a lower sensing node density. © 2023 IEEE -
dc.language English -
dc.publisher IEEE -
dc.title Robotic Skin Mimicking Human Skin Layer and Pacinian Corpuscle for Social Interaction -
dc.type Article -
dc.identifier.doi 10.1109/TMECH.2023.3337412 -
dc.identifier.wosid 001129746800001 -
dc.identifier.scopusid 2-s2.0-85180292831 -
dc.identifier.bibliographicCitation Yang, Min Jin. (2024-08). Robotic Skin Mimicking Human Skin Layer and Pacinian Corpuscle for Social Interaction. IEEE/ASME Transactions on Mechatronics, 29(4), 2709–2719. doi: 10.1109/TMECH.2023.3337412 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Biomimetic actuators and sensors -
dc.subject.keywordAuthor Biomimetic and bio-inspired robotics -
dc.subject.keywordAuthor human–robot interaction -
dc.subject.keywordAuthor soft actuators and sensors -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus SENSOR -
dc.subject.keywordPlus MECHANORECEPTIVE UNITS -
dc.subject.keywordPlus TACTILE SENSIBILITY -
dc.subject.keywordPlus ARTIFICIAL SKIN -
dc.subject.keywordPlus COLLAGEN-FIBERS -
dc.subject.keywordPlus RECEPTIVE-FIELD -
dc.subject.keywordPlus HUMAN HAND -
dc.subject.keywordPlus DENSITIES -
dc.citation.endPage 2719 -
dc.citation.number 4 -
dc.citation.startPage 2709 -
dc.citation.title IEEE/ASME Transactions on Mechatronics -
dc.citation.volume 29 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Automation & Control Systems; Engineering -
dc.relation.journalWebOfScienceCategory Automation & Control Systems; Engineering, Manufacturing; Engineering, Electrical & Electronic; Engineering, Mechanical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박경서
Park, Kyungseo박경서

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads