Detail View

산업제어시스템에서의 AI IDS 성능 향상을 위한 데이터 품질 연구 동향 및 제언
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
산업제어시스템에서의 AI IDS 성능 향상을 위한 데이터 품질 연구 동향 및 제언
Issued Date
2023-12
Citation
권남혁. (2023-12). 산업제어시스템에서의 AI IDS 성능 향상을 위한 데이터 품질 연구 동향 및 제언. 정보보호학회지, 33(6), 5–14.
Type
Article
ISSN
1598-3978
Abstract
최근 산업제어시스템을 대상으로 하는 보안 사고가 지속적으로 증가함에 따라서 이상탐지 시스템에 대한 다양한 연구가 진행되고 있다. 특히 AI 기술의 급속한 발달과 함께 수준 높은 AI기반 이상탐지시스템이 연구되고 있다. 이러한 AI 모델은 산업제어시스템 환경에서 적용할 수 있도록 실시간의 처리가 필요하며, 데이터 세트의 학습에는 산업제어시스템 특성을 고려하는 것이 요구된다. 따라서, 데이터 세트가 산업제어시스템에서 적합하게 활용될 수 있는지 판별할 수 있는 세부 기준을 마련하게 된다면, 우수한 데이터 세트의 활용을 통해 산업제어시스템을 위한 AI 모델의 성능이 향상될 것으로 보인다. 본 논문에서는 산업제어시스템의 AI 침입 탐지시스템의 성능 향상을 위한 데이터 품질 연구의 동향을 조사하고, 향후 발전을 위한 방향성을 구체적인 평가항목을 통해 제시하고자 한다.
URI
http://hdl.handle.net/20.500.11750/47701
Publisher
한국정보보호학회
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

신동훈
Shin, Donghoon신동훈

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads