Cited time in webofscience Cited time in scopus

Li2GeS3: Lithium Ionic Conductor with an Unprecedented Structural Type

Title
Li2GeS3: Lithium Ionic Conductor with an Unprecedented Structural Type
Author(s)
Roh, JihunDo, NamgyuManjon-Sanz, AliciaHong, Seung-Tae
Issued Date
2023-09
Citation
Inorganic Chemistry, v.62, no.39, pp.15856 - 15863
Type
Article
Keywords
X-RAY-DIFFRACTIONCRYSTAL-STRUCTURETHIO-LISICONPERCHLORATE ANHYDRATESUPERIONIC CONDUCTORELECTROLYTESLI7LA3ZR2O12COMPATIBILITYSPECTROSCOPYPROGRAM
ISSN
0020-1669
Abstract
Lithium-ion batteries (LIBs) are widely used in electric vehicles, mobile electronic devices, and large-scale stationary energy storage systems. However, their liquid electrolytes present significant safety concerns due to their inherent flammability. To address this, the focus has shifted toward all-solid-state batteries (ASSBs) utilizing inorganic solid electrolytes that promise enhanced safety. In this work, we report the discovery of a new crystal structural type of Li-ion conductor, Li2GeS3, with a unique structure, synthesized by a solid-state reaction from Li2S and GeS2. It was first reported in 2000 with an orthorhombic unit cell, but its detailed crystal structure remains veiled. We have unveiled its structure for the first time, employing an ab initio structure determination technique from powder X-ray and time-of-flight neutron diffraction data. The compound has an unprecedented crystal structural type with a hexagonal P61 symmetry and a unit cell of a = 6.79364(4) Å and c = 17.90724(14) Å. Its structure is comprised of a distorted hexagonal close-packed arrangement of sulfur anions with three asymmetric metal atoms: Li1, Li2, and Ge are in tetrahedral cavities surrounded by sulfur atoms. The ionic conductivity of Li2GeS3 was measured to be 1.63 × 10-8 S cm-1 at 303 K and 2.45 × 10-7 S cm-1 at 383 K. Bond valence energy landscape calculations revealed three-dimensional lithium diffusion pathways within the structure. This novel crystal structure in Li2GeS3 holds the potential for developing high-performance ionic conductors through suitable chemical substitution and offers valuable insights into designing new ionic conductors for ASSBs. © 2023 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/47752
DOI
10.1021/acs.inorgchem.3c01431
Publisher
American Chemical Society
Related Researcher
  • 홍승태 Hong, Seung-Tae
  • Research Interests Magnesium; calcium; and zinc ion batteries; lithium all-solid-state batteries; Inorganic materials discovery; Solid state chemistry; Crystallography; Mg; Ca; Zn 이온 이차전지; 리튬 전고체전지; 신 무기재료 합성; 고체화학; 결정화학
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials Discovery Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE