Detail View
Interfacial Triboelectricity Lights Up Phosphor-Polymer Elastic Composites: Unraveling the Mechanism of Mechanoluminescence in Zinc Sulfide Microparticle-Embedded Polydimethylsiloxane Films
- Department of Advanced Technology
- Soft Optoelectronic Materials Lab.
- 1. Journal Articles
- Division of Nanotechnology
- 1. Journal Articles
- Division of Energy & Environmental Technology
- 1. Journal Articles
- Department of Energy Science and Engineering
- Energy Conversion Materials Engineering Laboratory
- 1. Journal Articles
- Department of Energy Science and Engineering
- Chemical & Energy Materials Engineering (CEME) Laboratory
- 1. Journal Articles
WEB OF SCIENCE
SCOPUS
- Title
- Interfacial Triboelectricity Lights Up Phosphor-Polymer Elastic Composites: Unraveling the Mechanism of Mechanoluminescence in Zinc Sulfide Microparticle-Embedded Polydimethylsiloxane Films
- Issued Date
- 2024-04
- Citation
- Lee, Gyudong. (2024-04). Interfacial Triboelectricity Lights Up Phosphor-Polymer Elastic Composites: Unraveling the Mechanism of Mechanoluminescence in Zinc Sulfide Microparticle-Embedded Polydimethylsiloxane Films. Small, 20(17). doi: 10.1002/smll.202307089
- Type
- Article
- Author Keywords
- electroluminescence ; mechanoluminescence ; self-recovery ; triboelectric-ity ; ZnS:Cu
- Keywords
- ZNS POWDER PARTICLES ; ELECTROLUMINESCENT LINES ; DEPOSITION ; EMISSION
- ISSN
- 1613-6810
- Abstract
-
Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu–PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle–PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu–PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor–polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu–PDMS systems) with bright and durable ML. © 2024 Wiley-VCH GmbH.
더보기
- Publisher
- Wiley
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
