Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 김회준 -
dc.contributor.author Il Ryu Jang -
dc.date.accessioned 2024-02-29T21:00:54Z -
dc.date.available 2024-02-29T21:00:54Z -
dc.date.issued 2024 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/48014 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000724171 -
dc.description Piezoelectric resonator; QCM; SAW; Interfacial adhesion; Damping effect; Reliability; Stability; Microheater -
dc.description.tableofcontents ABSTRACT v
TABLE OF CONTENTS viii
CHAPTER 1: Introduction 1
1.1 Piezoelectric Resonant Sensor 1
1.1.1 Quartz Crystal Microbalance (QCM) 1
1.1.2 Surface Acoustic Wave (SAW) 2
1.2 Theoretical Equation and Required Conditions for Mass Calibration of a Resonator 3
1.3 Main Issues in Resonator-based Sensing 5
1.4 List of Publications for Each Chapter 7
1.5 References 9
CHAPTER 2: Self-limited Nucleation for In-Liquid Particle Detection 12
2.1 Introduction 12
2.2 Fabrication of CNT-QCMs 13
2.3 Particle Deposition and Formation Mechanisms 14
2.4 Results and Discussion 17
2.5 Conclusion 22
2.6 References 23
CHAPTER 3: Thermally-controlled Surface Adhesion for an Efficient Fine Dust Collection and Sensing 29
3.1 Introduction 29
3.2 Materials and Methods 32
3.3 Results and Discussion 33
3.4 Conclusion 46
3.5 References 47
CHAPTER 4: Direct and Controlled Device Integration of Graphene Oxide for Stable Humidity Sensing 53
4.1 Introduction 53
4.2 Preparation of GO Solution and Electrospray Deposition 55
4.3 Humidity Sensing Experiment 56
4.4 Results and Discussion 57
4.5 Conclusion 69
4.6 References 70
CHAPTER 5: Multi-frequency Surface Acoustic Wave Humidity Sensor for Hygienic Applications 75
5.1 Introduction 75
5.2 Materials and Methods 78
5.3 Results and Discussion 81
5.4 Conclusion 96
5.5 References 97
CHAPTER 6: Heated QCM for Ultra-reliable Humidity Sensing 103
6.1 Introduction 103
6.2 Synthesis and Characterization of ZIF-67 105
6.3 Device Fabrication and Experiment 106
6.4 Results and Discussion 108
6.5 Conclusion 120
6.6 References 121
CHAPTER 7: Interfacial Adhesion Control via Reduction of Graphene Oxide for Heterogeneous Material Integration 127
7.1 Introduction 127
7.2 Results and Discussion 129
7.3 Methods 144
7.4 Conclusion 148
7.5 References 148
CHAPTER 8: Enhanced Lifetime of QCM Particle Sensor in PECVD through Bypass Piping 153
8.1 Introduction 153
8.2 Particle Sensing Setup & Process Condition 155
8.3 Device Fabrication & Characterization 156
8.4 ex-situ Analysis 157
8.5 Results and Discussion 158
8.6 Conclusion 170
8.7 References 172
CHAPTER 9: Conclusions and Future Work 178
9.1 Conclusions 178
9.2 Future Work 181
9.2.1 High Precision Mass Sensing with Multi-frequency SAW 181
9.2.2 Particle Sizing and Sensing System with multi-frequency SAW 182
9.2.3 Cortisol Sensing with a Flexible Thin Film Transistor 183
9.3 References 185
요 약 문 188
APPENDIX A: Heated QCM Fabrication Process 190
APPENDIX B: Multi-frequency SAW Fabrication Process 193
APPENDIX C: Wearable Phototherapy Device Fabrication Process 195
-
dc.format.extent 201 -
dc.language eng -
dc.publisher DGIST -
dc.title Thermal Operation and Direct Materials Integration of Piezoelectric Resonant Sensors for Fine Particle Detection and Humidity Sensing -
dc.title.alternative 환경 모니터링을 위한 압전 공진 센서의 열적 구동 및 물질 결합 -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000724171 -
dc.description.degree Doctor -
dc.contributor.department Department of Robotics and Mechatronics Engineering -
dc.contributor.coadvisor Hongki Kang -
dc.date.awarded 2024-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RD 장68 202402 -
dc.date.accepted 2024-01-30 -
dc.contributor.alternativeDepartment 로봇및기계전자공학과 -
dc.subject.keyword Piezoelectric resonator -
dc.subject.keyword QCM -
dc.subject.keyword SAW -
dc.subject.keyword Interfacial adhesion -
dc.subject.keyword Damping effect -
dc.subject.keyword Reliability -
dc.subject.keyword Stability -
dc.subject.keyword Microheater -
dc.contributor.affiliatedAuthor Il Ryu Jang -
dc.contributor.affiliatedAuthor Hoe Joon Kim -
dc.contributor.affiliatedAuthor Hongki Kang -
dc.contributor.alternativeName 장일류 -
dc.contributor.alternativeName Hoe Joon Kim -
dc.contributor.alternativeName 강홍기 -
dc.rights.embargoReleaseDate 2026-02-28 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE