Detail View

Regularization and Kernelization of the Maximin Correlation Approach
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Taehoon -
dc.contributor.author Moon, Taesup -
dc.contributor.author Kim, Seung Jean -
dc.contributor.author Yoon, Sungroh -
dc.date.available 2018-01-25T01:09:08Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016 -
dc.identifier.issn 2169-3536 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5141 -
dc.description.abstract Robust classification becomes challenging when each class consists of multiple subclasses. Examples include multi-font optical character recognition and automated protein function prediction. In correlation-based nearest-neighbor classification, the maximin correlation approach (MCA) provides the worst-case optimal solution by minimizing the maximum misclassification risk through an iterative procedure. Despite the optimality, the original MCA has drawbacks that have limited its wide applicability in practice. That is, the MCA tends to be sensitive to outliers, cannot effectively handle nonlinearities in datasets, and suffers from having high computational complexity. To address these limitations, we propose an improved solution, named regularized MCA (R-MCA). We first reformulate MCA as a quadratically constrained linear programming (QCLP) problem, incorporate regularization by introducing slack variables in the primal problem of the QCLP, and derive the corresponding Lagrangian dual. The dual formulation enables us to apply the kernel trick to R-MCA, so that it can better handle nonlinearities. Our experimental results demonstrate that the regularization and kernelization make the proposed R-MCA more robust and accurate for various classification tasks than the original MCA. Furthermore, when the data size or dimensionality grows, R-MCA runs substantially faster by solving either the primal or dual (whichever has a smaller variable dimension) of the QCLP. The source code of the proposed R-MCA methodology is available at http://data.snu.ac.kr/rmca. © 2013 IEEE. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers Inc. -
dc.title Regularization and Kernelization of the Maximin Correlation Approach -
dc.type Article -
dc.identifier.doi 10.1109/ACCESS.2016.2551727 -
dc.identifier.wosid 000375577100013 -
dc.identifier.scopusid 2-s2.0-84979828468 -
dc.identifier.bibliographicCitation IEEE Access, v.4, pp.1385 - 1392 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Nearest neighbor -
dc.subject.keywordAuthor correlation -
dc.subject.keywordAuthor maximin -
dc.subject.keywordAuthor SOCP -
dc.subject.keywordAuthor QCLP -
dc.subject.keywordAuthor QP -
dc.subject.keywordAuthor regularization -
dc.subject.keywordAuthor kernel trick -
dc.subject.keywordPlus Character Recognition -
dc.subject.keywordPlus Correlation -
dc.subject.keywordPlus Correlation Methods -
dc.subject.keywordPlus EXPRESSION -
dc.subject.keywordPlus Iterative Methods -
dc.subject.keywordPlus Kernel Trick -
dc.subject.keywordPlus Learning Systems -
dc.subject.keywordPlus Linear Programming -
dc.subject.keywordPlus Maximin -
dc.subject.keywordPlus Nearest Neighbor -
dc.subject.keywordPlus Nearest Neighbors -
dc.subject.keywordPlus NEIGHBOR -
dc.subject.keywordPlus Networks -
dc.subject.keywordPlus Optical Character Recognition -
dc.subject.keywordPlus Optimization -
dc.subject.keywordPlus QCLP -
dc.subject.keywordPlus QP -
dc.subject.keywordPlus RECOGNITION -
dc.subject.keywordPlus Regularization -
dc.subject.keywordPlus SOCP -
dc.citation.endPage 1392 -
dc.citation.startPage 1385 -
dc.citation.title IEEE Access -
dc.citation.volume 4 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science; Engineering; Telecommunications -
dc.relation.journalWebOfScienceCategory Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads