Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Ketpang, Kriangsak -
dc.contributor.author Son, Byungrak -
dc.contributor.author Lee, Dongha -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.accessioned 2018-01-25T01:10:05Z -
dc.date.available 2018-01-25T01:10:05Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-08 -
dc.identifier.issn 0376-7388 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5175 -
dc.description.abstract We report a high performance and durable electrolyte membrane operated in polymer electrolyte membrane fuel cells under low relative humidity (RH). This was accomplished by incorporating water retaining mesoporous zirconium oxide (ZrO1.95) nanotubes (ZrNT) in a perfluorosulfonic acid (Nafion) membrane. Porous ZrNT with average diameters of 90nm was synthesized by pyrolysing electrospun zirconium precursor embedded polymer fibers at 600°C under an air atmosphere. The superior water retention ability and the tubular morphology of the ZrNT fillers resulted in facile water diffusion through the membrane, leading to a significant improvement in membrane proton conductivity under both fully humid and dry conditions. Compared to a commercial membrane (Nafion, NRE-212) operated under 50% and 100% RH at 80°C, the Nafion-ZrNT membrane exhibited 2.7 and 1.2 times higher power density at 0.6V, respectively. Under dry conditions (18% RH at 80°C), the Nafion-ZrNT membrane exhibited 3.1 times higher maximum power density than the NRE-212 membrane. In addition, the Nafion-ZrNT membrane also exhibited durable operation for 200h under 18% RH at 80oC. The remarkably high performance of the Nafion-ZrNT composite membrane was mainly attributed to the reduction of ohmic resistance by incorporating the mesoporous hygroscopic ZrO1.95 nanotubes. © 2015 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions -
dc.type Article -
dc.identifier.doi 10.1016/j.memsci.2015.03.096 -
dc.identifier.scopusid 2-s2.0-84929465338 -
dc.identifier.bibliographicCitation Journal of Membrane Science, v.488, pp.154 - 165 -
dc.subject.keywordAuthor Nafion composite membrane -
dc.subject.keywordAuthor Mesoporous ZrO1.95 nanotubes -
dc.subject.keywordAuthor Water back diffusion -
dc.subject.keywordAuthor Fuel cells -
dc.subject.keywordAuthor Electrospinning -
dc.subject.keywordPlus Adsorption -
dc.subject.keywordPlus Article -
dc.subject.keywordPlus Artificial Membrane -
dc.subject.keywordPlus Atmosphere -
dc.subject.keywordPlus Back Diffusion -
dc.subject.keywordPlus Bioengineering -
dc.subject.keywordPlus Composite Membranes -
dc.subject.keywordPlus Conductance -
dc.subject.keywordPlus Current Density -
dc.subject.keywordPlus Decomposition -
dc.subject.keywordPlus DEGRADATION -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus Electrolyte Membrane -
dc.subject.keywordPlus Electrolytes -
dc.subject.keywordPlus Electrospinning -
dc.subject.keywordPlus ENHANCED PROTON CONDUCTIVITY -
dc.subject.keywordPlus Fuel Cells -
dc.subject.keywordPlus Gas Fuel Purification -
dc.subject.keywordPlus HIGH-TemPERATURE -
dc.subject.keywordPlus HUMIDITY -
dc.subject.keywordPlus HYBRID MemBRANES -
dc.subject.keywordPlus Hydrogen Bond -
dc.subject.keywordPlus LOW RELATIVE-HUMIDITY -
dc.subject.keywordPlus Low Relative Humidities -
dc.subject.keywordPlus Maximum Power Density -
dc.subject.keywordPlus MemBRANES -
dc.subject.keywordPlus Mesoporous -
dc.subject.keywordPlus Mesoporous Materials -
dc.subject.keywordPlus MESOPOROUS SILICA -
dc.subject.keywordPlus Mesoporous ZrO1.95 Nanotubes -
dc.subject.keywordPlus Nafion Composite Membrane -
dc.subject.keywordPlus Nafion Composite Membranes -
dc.subject.keywordPlus Nanocomposite -
dc.subject.keywordPlus NANOCOMPOSITE MemBRANES -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus Nanotube -
dc.subject.keywordPlus NANOTUBES -
dc.subject.keywordPlus Nuclear Magnetic Resonance Spectroscopy -
dc.subject.keywordPlus Ohmic Contacts -
dc.subject.keywordPlus OXIDES -
dc.subject.keywordPlus PemFC OPERATION -
dc.subject.keywordPlus Perfluorosulfonic ACID Membranes -
dc.subject.keywordPlus Polyelectrolytes -
dc.subject.keywordPlus Polymer -
dc.subject.keywordPlus Polymer Electrolyte Membrane Fuel Cell -
dc.subject.keywordPlus Polymers -
dc.subject.keywordPlus Priority Journal -
dc.subject.keywordPlus Proton Exchange Membrane Fuel Cells (PemFC) -
dc.subject.keywordPlus Scanning Electron Microscopy -
dc.subject.keywordPlus Silicotungstic ACID -
dc.subject.keywordPlus Solid Electrolytes -
dc.subject.keywordPlus Surface Area -
dc.subject.keywordPlus Surface Property -
dc.subject.keywordPlus Tensile Strength -
dc.subject.keywordPlus Thermostability -
dc.subject.keywordPlus WATER -
dc.subject.keywordPlus Water Analysis -
dc.subject.keywordPlus Water Back Diffusion -
dc.subject.keywordPlus Water Retention -
dc.subject.keywordPlus Water Retention Ability -
dc.subject.keywordPlus X Ray Diffraction -
dc.subject.keywordPlus Yarn -
dc.subject.keywordPlus Zirconia -
dc.subject.keywordPlus Zirconium -
dc.subject.keywordPlus Zirconium Alloys -
dc.subject.keywordPlus Zirconium Oxide -
dc.citation.endPage 165 -
dc.citation.startPage 154 -
dc.citation.title Journal of Membrane Science -
dc.citation.volume 488 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE