Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Son, Dae-Ho -
dc.contributor.author Kim, Dae-Hwan -
dc.contributor.author Park, Si-Nae -
dc.contributor.author Yang, Kee-Jeong -
dc.contributor.author Nam, Dahyun -
dc.contributor.author Cheong, Hyeonsik -
dc.contributor.author Kang, Jin-Kyu -
dc.date.accessioned 2018-01-25T01:10:07Z -
dc.date.available 2018-01-25T01:10:07Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-08 -
dc.identifier.issn 0897-4756 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5176 -
dc.description.abstract The improvement of the efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)-based solar cells requires the formation of high-grain-sized pure CZTSSe throughout the film. We have successfully selenized precursor samples of Cu/SnS/ZnS/Mo/Soda lime glass in an almost sealed selenium furnace. Owing to the presence of confined and high-pressure Se vapor in the furnace, Se easily diffused into the precursor samples, and high-quality Se-rich CZTSSe absorbers were obtained. To understand the effect of the growth mechanism in our precursor and annealing system, this study examines the phase evolution and grain formation. Device parameters are discussed from the perspective of a material microstructure in order to improve performance. At a selenization temperature of 570 °C, a CZTSSe film showed fully developed grains with a size of around 2 μm without noticeable pore development near the Mo back contact. Solar cells with up to 8.03% efficiency were obtained with a layer thickness of about 1.2 μm. Detailed electrical analysis of the device indicated that the performance of the device is mainly associated with shunt resistance. © 2015 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Growth and Device Characteristics of CZTSSe Thin-Film Solar Cells with 8.03% Efficiency -
dc.type Article -
dc.identifier.doi 10.1021/acs.chemmater.5b01181 -
dc.identifier.scopusid 2-s2.0-84939126448 -
dc.identifier.bibliographicCitation Chemistry of Materials, v.27, no.15, pp.5180 - 5188 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus ABSORBER -
dc.subject.keywordPlus COPPER -
dc.subject.keywordPlus CU2ZNSNSE4 -
dc.subject.keywordPlus DEVICE CHARACTERISTICS -
dc.subject.keywordPlus Efficiency -
dc.subject.keywordPlus Electrical Analysis -
dc.subject.keywordPlus Film Growth -
dc.subject.keywordPlus FORMATION MECHANISM -
dc.subject.keywordPlus Grain Growth -
dc.subject.keywordPlus Growth Mechanisms -
dc.subject.keywordPlus Improve Performance -
dc.subject.keywordPlus Material Microstructures -
dc.subject.keywordPlus PRECURSORS -
dc.subject.keywordPlus Selenization -
dc.subject.keywordPlus Selenization Temperatures -
dc.subject.keywordPlus Semiconducting Selenium Compounds -
dc.subject.keywordPlus Shunt Resistances -
dc.subject.keywordPlus Solar Cells -
dc.subject.keywordPlus Thin Film Solar Cells -
dc.subject.keywordPlus Thin Films -
dc.citation.endPage 5188 -
dc.citation.number 15 -
dc.citation.startPage 5180 -
dc.citation.title Chemistry of Materials -
dc.citation.volume 27 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles
Convergence Research Center for Solar Energy 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE