Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Jongyoun -
dc.contributor.author Lee, Taemin -
dc.contributor.author Jung, Hyun Dong -
dc.contributor.author Kim, Minkyoung -
dc.contributor.author Eo, Jungsu -
dc.contributor.author Kang, Byeongjae -
dc.contributor.author Jung, Hyeonwoo -
dc.contributor.author Park, Jaehyoung -
dc.contributor.author Bae, Daewon -
dc.contributor.author Lee, Yujin -
dc.contributor.author Park, Sojung -
dc.contributor.author Kim, Wooyul -
dc.contributor.author Back, Seoin -
dc.contributor.author Lee, Youngu -
dc.contributor.author Nam, Dae-Hyun -
dc.date.accessioned 2024-06-24T09:40:12Z -
dc.date.available 2024-06-24T09:40:12Z -
dc.date.created 2024-01-11 -
dc.date.issued 2024-01 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56659 -
dc.description.abstract High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C−C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C−C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding. © 2024, The Author(s). -
dc.language English -
dc.publisher Springer Nature -
dc.title Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction -
dc.type Article -
dc.identifier.doi 10.1038/s41467-023-44586-0 -
dc.identifier.wosid 001243387200001 -
dc.identifier.scopusid 2-s2.0-85181233216 -
dc.identifier.bibliographicCitation Nature Communications, v.15, no.1 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus FINDING SADDLE-POINTS -
dc.subject.keywordPlus GRAPHENE OXIDE -
dc.subject.keywordPlus ELECTROCHEMICAL REDUCTION -
dc.subject.keywordPlus ENERGY CALCULATIONS -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus ASCORBIC-ACID -
dc.subject.keywordPlus TANNIC-ACID -
dc.subject.keywordPlus SELECTIVITY -
dc.subject.keywordPlus SEQUESTRATION -
dc.subject.keywordPlus ELECTRODES -
dc.citation.number 1 -
dc.citation.title Nature Communications -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE