Detail View

Title
Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction
Issued Date
2024-01
Citation
Kim, Jongyoun. (2024-01). Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction. Nature Communications, 15(1). doi: 10.1038/s41467-023-44586-0
Type
Article
Keywords
GRAPHENE OXIDEFINDING SADDLE-POINTSELECTROCHEMICAL REDUCTIONENERGY CALCULATIONSCARBON-DIOXIDEASCORBIC-ACIDTANNIC-ACIDSELECTIVITYSEQUESTRATIONELECTRODES
ISSN
2041-1723
Abstract
High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C−C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C−C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding. © 2024, The Author(s).
URI
http://hdl.handle.net/20.500.11750/56659
DOI
10.1038/s41467-023-44586-0
Publisher
Springer Nature
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이윤구
Lee, Youngu이윤구

Department of Energy Science and Engineering

read more

Total Views & Downloads