Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Yoo, Jisu -
dc.contributor.author Lee, Kyunghoon -
dc.contributor.author Yang, U. Jeong -
dc.contributor.author Song, Hyeon Hwa -
dc.contributor.author Jang, Jae Hong -
dc.contributor.author Lee, Gwang Heon -
dc.contributor.author Bootharaju, Megalamane S. -
dc.contributor.author Kim, Jun Hee -
dc.contributor.author Kim, Kiwook -
dc.contributor.author Park, Soo Ik -
dc.contributor.author Seo, Jung Duk -
dc.contributor.author Li Shi -
dc.contributor.author Yu, Won Seok -
dc.contributor.author Kwon, Jong Ik -
dc.contributor.author Song, Myoung Hoon -
dc.contributor.author Hyeon, Taeghwan -
dc.contributor.author Yang, Jiwoong -
dc.contributor.author Choi, Moon Kee -
dc.date.accessioned 2024-09-12T10:40:15Z -
dc.date.available 2024-09-12T10:40:15Z -
dc.date.created 2024-08-16 -
dc.date.issued ACCEPT -
dc.identifier.issn 1749-4885 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56877 -
dc.description.abstract Highly efficient and high-definition displays with deformable form factors are highly desirable for next-generation electronic devices. Despite the unique advantages of quantum dots (QDs), including high photoluminescence quantum yield, wide colour range and high colour purity, developing a QD patterning process for high-definition pixels and efficient QD light-emitting diodes (QLEDs) is in its early stages. Here we present highly efficient QLEDs through ultrahigh-definition double-layer transfer printing of a QD/ZnO film. Surface engineering of viscoelastic stamps enables double-layer transfer printing that can create RGB pixelated patterns with 2,565 pixels per inch and monochromic QD patterns with ~20,526 pixels per inch. The close packing of both QDs and ZnO nanoparticles by double-layer transfer printing substantially minimizes the leakage current, enhancing the external quantum efficiency of our devices to 23.3%. Furthermore, we demonstrate highly efficient wearable QLEDs fabricated by our technique. This study paves the way for the development of highly efficient, full-colour QD displays via the transfer printing technique, demonstrating great promise for next-generation display technologies. © The Author(s), under exclusive licence to Springer Nature Limited 2024. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing -
dc.type Article -
dc.identifier.doi 10.1038/s41566-024-01496-x -
dc.identifier.wosid 001283321800001 -
dc.identifier.scopusid 2-s2.0-85200345674 -
dc.identifier.bibliographicCitation Nature Photonics -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus HIGH-BRIGHTNESS -
dc.subject.keywordPlus FULL-COLOR -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus DISPLAY -
dc.citation.title Nature Photonics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Optics; Physics -
dc.relation.journalWebOfScienceCategory Optics; Physics, Applied -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering NanoMaterials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE