Detail View

An Ensemble Pattern Classification System Based on Multitree Genetic Programming for Improving Intension Pattern Recognition Using Brain Computer Interaction
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Jong-Hyun -
dc.contributor.author An, Jinung -
dc.contributor.author Ahn, Chang Wook -
dc.date.accessioned 2024-12-08T17:10:15Z -
dc.date.available 2024-12-08T17:10:15Z -
dc.date.created 2024-12-08 -
dc.date.issued 2014-10-16 -
dc.identifier.isbn 9783662450499 -
dc.identifier.issn 1865-0929 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57262 -
dc.description.abstract Ensemble learning is one of the successful methods to construct a classification system. Many researchers have been interested in the method for improving the classification accuracy. In this paper, we proposed an ensemble classification system based on multitree genetic programming for intension pattern recognition using BCI. The multitree genetic programming mechanism is designed to increase the diversity of each ensemble classifier. Also, the proposed system uses an evaluation method based on boosting and performs the parallel learning and the interaction by multitree. Finally, the system is validated by the comparison experiments with existing algorithms. © Springer-Verlag Berlin Heidelberg 2014. -
dc.language English -
dc.publisher National Natural Science Foundation of China -
dc.relation.ispartof Communications in Computer and Information Science -
dc.title An Ensemble Pattern Classification System Based on Multitree Genetic Programming for Improving Intension Pattern Recognition Using Brain Computer Interaction -
dc.type Conference Paper -
dc.identifier.doi 10.1007/978-3-662-45049-9_39 -
dc.identifier.wosid 000349707200039 -
dc.identifier.scopusid 2-s2.0-84921954618 -
dc.identifier.bibliographicCitation Lee, Jong-Hyun. (2014-10-16). An Ensemble Pattern Classification System Based on Multitree Genetic Programming for Improving Intension Pattern Recognition Using Brain Computer Interaction. 9th International Conference on Bio-Inspired Computing - Theories and Applications (BIC-TA), 239–246. doi: 10.1007/978-3-662-45049-9_39 -
dc.citation.conferenceDate 2014-10-16 -
dc.citation.conferencePlace CC -
dc.citation.conferencePlace Wuhan -
dc.citation.endPage 246 -
dc.citation.startPage 239 -
dc.citation.title 9th International Conference on Bio-Inspired Computing - Theories and Applications (BIC-TA) -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

안진웅
An, Jinung안진웅

Division of Intelligent Robotics

read more

Total Views & Downloads