Detail View

Low magnetic field alignment of carbon fibers in a polymer matrix for high-performance thermal interface materials
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Chung, Seok-Hwan -
dc.contributor.author Kim, Jong Tae -
dc.contributor.author Kim, Jeongmin -
dc.contributor.author Kim, Dong Hwan -
dc.date.accessioned 2024-12-22T19:10:18Z -
dc.date.available 2024-12-22T19:10:18Z -
dc.date.created 2024-10-18 -
dc.date.issued 2024-12 -
dc.identifier.issn 0925-8388 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57346 -
dc.description.abstract Carbon-based materials like carbon nanotubes, graphene nanoplatelets, graphite, and carbon fibers (CF) are highly promising fillers for enhancing the thermal conductivity of thermal interface materials (TIMs) due to their high thermal conductivity and low thermal expansion. Aligning these fillers can further improve thermal conductivity, but current alignment methods using high magnetic fields are impractical for industrial use. In this study, we investigated the enhancement of the thermal conductivity of CF–polymer composites by aligning CF fillers with a low magnetic field. We observed up to 17 times enhancement of the thermal conductivity (from 3.1 to 52.8 W/mK) in a CF–graphene–polymer composite film by vertically aligning the CF fillers with a magnetic field of 0.75 T. The analysis of the structural properties of the films using X-ray diffraction and field-emission scanning electron microscopy imaging confirmed that the crystalline c-axis of the graphite plates in the CF was oriented perpendicular to the magnetic field direction. The large anisotropy in the diamagnetic susceptibility of the laminated graphene structure of the CF flakes is at the origin of the filler alignment. Furthermore, the thermal conductivity of the composites showed a strong correlation with the degree of filler alignment, which was dependent on the CF–graphene hybridization and the type of polymer matrix. This study provides a scalable and cost-effective method for enhancing the physical properties of carbon composites by controlling their microarchitecture using a low magnetic field. © 2024 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier -
dc.title Low magnetic field alignment of carbon fibers in a polymer matrix for high-performance thermal interface materials -
dc.type Article -
dc.identifier.doi 10.1016/j.jallcom.2024.176888 -
dc.identifier.wosid 001335630600001 -
dc.identifier.scopusid 2-s2.0-85206202223 -
dc.identifier.bibliographicCitation Chung, Seok-Hwan. (2024-12). Low magnetic field alignment of carbon fibers in a polymer matrix for high-performance thermal interface materials. Journal of Alloys and Compounds, 1009. doi: 10.1016/j.jallcom.2024.176888 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Carbon fiber -
dc.subject.keywordAuthor Graphene -
dc.subject.keywordAuthor Polymer composites -
dc.subject.keywordAuthor Magnetic alignment -
dc.subject.keywordAuthor Thermal interface material -
dc.subject.keywordPlus BORON-NITRIDE -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus COMPOSITES -
dc.subject.keywordPlus SUSCEPTIBILITY -
dc.subject.keywordPlus NANOCOMPOSITES -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus MANAGEMENT -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus VISCOSITY -
dc.citation.title Journal of Alloys and Compounds -
dc.citation.volume 1009 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Metallurgy & Metallurgical Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

정석환
Chung, Seok-Hwan정석환

Division of Nanotechnology

read more

Total Views & Downloads