Detail View

DC Field Value Language
dc.contributor.author Kim, Minsoo -
dc.contributor.author Kim, Donghoon -
dc.contributor.author Mirjolet, Mathieu -
dc.contributor.author Shepelin, Nick A. -
dc.contributor.author Lippert, Thomas -
dc.contributor.author Choi, Hongsoo -
dc.contributor.author Puigmarti-Luis, Josep -
dc.contributor.author Nelson, Bradley J. -
dc.contributor.author Chen, Xiang-Zhong -
dc.contributor.author Pane, Salvador -
dc.date.accessioned 2024-12-24T17:10:21Z -
dc.date.available 2024-12-24T17:10:21Z -
dc.date.created 2024-10-21 -
dc.date.issued 2024-11 -
dc.identifier.issn 0935-9648 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57433 -
dc.description.abstract Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices. © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes -
dc.type Article -
dc.identifier.doi 10.1002/adma.202404825 -
dc.identifier.wosid 001329566300001 -
dc.identifier.scopusid 2-s2.0-85205831526 -
dc.identifier.bibliographicCitation Kim, Minsoo. (2024-11). Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes. Advanced Materials, 36(47). doi: 10.1002/adma.202404825 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor ferroic nanocomposites -
dc.subject.keywordAuthor kirigami -
dc.subject.keywordAuthor microactuators -
dc.subject.keywordAuthor nanomembranes -
dc.subject.keywordAuthor stimulus responsive materials -
dc.subject.keywordPlus SIGE/SI -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus ELASTIC PROPERTIES -
dc.subject.keywordPlus STRAIN -
dc.subject.keywordPlus FERROELECTRICITY -
dc.subject.keywordPlus DELIVERY -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus FABRICATION -
dc.citation.number 47 -
dc.citation.title Advanced Materials -
dc.citation.volume 36 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads