Detail View

Controlled synthesis of branched 2D polytypic CdS quantum nanostructures
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Yoonkyum -
dc.contributor.author Ma, Hyeonjong -
dc.contributor.author Kim, Hyeongseung -
dc.contributor.author Ahn, Hyungju -
dc.contributor.author Min, Gyeonguk -
dc.contributor.author Lee, Dong Hyeon -
dc.contributor.author Noh, Yong-Young -
dc.contributor.author Joo, Jin -
dc.contributor.author Yang, Jiwoong -
dc.contributor.author Son, Jae Sung -
dc.date.accessioned 2024-12-24T19:10:16Z -
dc.date.available 2024-12-24T19:10:16Z -
dc.date.created 2024-12-18 -
dc.date.issued 2025-03 -
dc.identifier.issn 2588-8420 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57457 -
dc.description.abstract Colloidal two-dimensional (2D) semiconductor quantum nanostructures have attracted substantial interest owing to their atomically uniform thickness and spectrally sharp luminescence, exhibiting potential for optoelectronic and electronic device applications. Despite recent advancements in chemical synthesis enabling better control over lateral shapes and heterostructures, achieving morphological complexity in 2D semiconductor nanocrystals remains challenging. In this study, we report the controlled synthesis of branched 2D CdS quantum nanostructures, facilitating the realization of polytypism by growing zinc blende nano-domains within wurtzite-structured quantum nanoplates. The synthesized structures comprise multi-branched 2D quantum nanoplate arms with a precisely controlled thickness of ∼1.8 nm, joined at the zinc blende nano-domain junctions. The reaction conditions enable controlled variation in the length and complexity of these structures, while maintaining their sharp excitonic features of quantum-confined 2D semiconductor nanocrystals. In-situ small- and wide-angle X-ray scattering analysis, combined with spectroscopic and microscopic analyses, reveals that a discontinuous increase in thickness beyond a certain threshold is necessary to form zinc blende crystals within wurtzite nanoplates, upon which additional 2D quantum nanoplates subsequently grow. This study advances our understanding of 2D nanocrystal synthesis mechanisms and provides pathways for designing and fabricating branched 2D nanostructures with tailored properties. © 2024 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier -
dc.title Controlled synthesis of branched 2D polytypic CdS quantum nanostructures -
dc.type Article -
dc.identifier.doi 10.1016/j.mtnano.2024.100549 -
dc.identifier.wosid 001375330200001 -
dc.identifier.scopusid 2-s2.0-85210656610 -
dc.identifier.bibliographicCitation Kim, Yoonkyum. (2025-03). Controlled synthesis of branched 2D polytypic CdS quantum nanostructures. Materials Today Nano, 29. doi: 10.1016/j.mtnano.2024.100549 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Polytypism -
dc.subject.keywordAuthor Cadmium sulfide -
dc.subject.keywordAuthor 2D materials -
dc.subject.keywordAuthor Branched structure -
dc.subject.keywordAuthor Quantum structure -
dc.subject.keywordAuthor Colloidal synthesis -
dc.subject.keywordPlus NANOCRYSTALS -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus NANOPLATELETS -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus NANOCLUSTERS -
dc.subject.keywordPlus SPECTROSCOPY -
dc.subject.keywordPlus MORPHOLOGY -
dc.subject.keywordPlus SHAPE CONTROL -
dc.subject.keywordPlus DEPENDENT PROPERTIES -
dc.subject.keywordPlus SEMICONDUCTOR -
dc.citation.title Materials Today Nano -
dc.citation.volume 29 -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

양지웅
Yang, Jiwoong양지웅

Department of Energy Science and Engineering

read more

Total Views & Downloads