Detail View

Intelligent Decision-Making for Reliable Information Transfer in Next-Generation Wireless Networks
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 이성진 -
dc.contributor.author Sinwoong Yun -
dc.date.accessioned 2025-02-28T21:01:23Z -
dc.date.available 2025-02-28T21:01:23Z -
dc.date.issued 2025 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57997 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000840042 -
dc.description IoT networks, data freshness, reinforcement learning, intelligent prediction, physical layer authentication -
dc.description.tableofcontents I. Learning-based Sensing and Computing Decision for Data Freshness in Edge Computing-enabled Networks 1
1.1 Introduction 1
1.2 Edge Computing-enabled Wireless Sensor Networks Model 4
1.2.1 Network Description 4
1.2.2 Transmission Model 5
1.2.3 Energy Model 6
1.2.4 η-Coverage Probability 7
1.2.5 Two SCD Approaches 10
1.3 Probability-based SCD Algorithm 10
1.3.1 Single Pre-Charged Sensor Case 11
1.3.2 Multiple EH Sensor Case 20
1.4 RL-based SCD Algorithm 20
1.4.1 POMDP Formulation 21
1.4.2 Proposed Network Architecture 22
1.4.3 Complexity Analysis 24
1.5 Simulation Results 25
1.6 Conclusion 30
II. i-CU: Intelligent Cache Replacement and Content Update for Data Freshness in Cloud-Edge Networks 32
2.1 Introduction 32
2.2 System Model and Problem Formulation 35
2.2.1 Network Description and Age of Information 35
2.2.2 Content Request and Transmission Model 38
2.2.3 FACH Ratio Maximization Problem 39
2.3 Intelligent Cache Replacement and Content Update Algorithm 41
2.3.1 MDP Formulation 41
2.3.2 Score-based Action Decision 42
2.3.3 Proposed Algorithm 44
2.3.4 Complexity Analysis 47
2.4 Simulation Results 49
2.4.1 Simulation Setting and Baseline Algorithms 49
2.4.2 Training Curve and Performance Verification 51
2.4.3 Effect of Environmental Parameters on Performance 53
2.5 Conclusion 56
III.Channel Feature Prediction-based Physical Layer Authentication in Underwater Networks 58
3.1 Introduction 58
3.2 CIR Feature Prediction-based Authentication 59
3.2.1 Network Model 59
3.2.2 Feature Prediction-based Authentication 60
3.3 Simulation Results 61
3.4 Conclusion 62
References 63
-
dc.format.extent 72 -
dc.language eng -
dc.publisher DGIST -
dc.title Intelligent Decision-Making for Reliable Information Transfer in Next-Generation Wireless Networks -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000840042 -
dc.description.degree Doctor -
dc.contributor.department Department of Electrical Engineering and Computer Science -
dc.identifier.bibliographicCitation Sinwoong Yun. (2025). Intelligent Decision-Making for Reliable Information Transfer in Next-Generation Wireless Networks. doi: 10.22677/THESIS.200000840042 -
dc.contributor.coadvisor Jemin Lee -
dc.date.awarded 2025-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.ID 윤58 202502 -
dc.date.accepted 2025-01-20 -
dc.contributor.alternativeDepartment 전기전자컴퓨터공학과 -
dc.subject.keyword IoT networks, data freshness, reinforcement learning, intelligent prediction, physical layer authentication -
dc.contributor.affiliatedAuthor Sinwoong Yun -
dc.contributor.affiliatedAuthor Sungjin Lee -
dc.contributor.affiliatedAuthor Jemin Lee -
dc.contributor.alternativeName 윤신웅 -
dc.contributor.alternativeName Sungjin Lee -
dc.contributor.alternativeName 이제민 -
dc.rights.embargoReleaseDate 2030-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads