Maidarjav Amarbayasgalan. (2025). Biodegradation of ethylene-vinyl acetate and acrylonitrile butadiene styrene using bacteria. doi: 10.22677/THESIS.200000828485
The massive accumulation of plastic waste in land or marine environments is one of the critical environmental issues worldwide. Plastic biodegradation by microorganisms, insect larvae, and enzymes has become one of the most popular solutions due to the ability of this strategy to generate environmentally benign byproducts, addressing ecological plastic waste concerns. This study evaluated the biodegradation of ethylene- vinyl acetate (EVA) and acrylonitrile-butadiene-styrene (ABS). The bacterial strain identified as Klebsiella aerogenes EM011, isolated from effective microorganisms, was involving the biodegradation of EVA plastic. The study found that K. aerogenes EM011 can survive in a carbon-free medium for 30 days using EVA films as the sole energy source, decomposing 0.65 ± 0.04% of 1 g of EVA film. The surface changes of the EVA film were detected using scanning electron microscopy (SEM) after treatment with K. aerogenes EM011. In addition, elemental modifications were detected in the imaged area of the plastic surfaces by energy-dispersive X-ray spectroscopy (EDS). Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses were conducted to detect changes in the functional groups and chemical components, elucidating alterations on the surface of the EVA films. Through these physicochemical analyses, the formation of carbonyl groups (C=O), ester groups (C-O), and hydroxyl groups (-OH) confirmed the oxidation of EVA. Furthermore, the oxidation led to the decomposition of the EVA film, resulting in changes in its thermal stability, hydrophobicity and molecular weight distribution. In term of ABS biodegradation, the bacterial strain identified as Brevibacillus nitrificans ABS-02, likewise isolated from effective microorganisms, was capable of degrading the ABS plastic film. The viability of B. nitrificans ABS-02 in carbon-free medium was asserted, as it exhibited proliferating cell growth up to 30- day cultivation period while using 0.9 ± 0.1% of the ABS plastic as the carbon source. The B. nitrificans ABS- 02 exhibited noticeable surface damage and the accumulation of oxygen in the damaged area of the ABS film surface after bacterial treatment, as monitored through SEM and EDS analyses. The spectral analyses of the ABS films treated with B. nitrificans ABS-02, including FT-IR and XPS, confirmed changes in chemical composition; with new peaks emerging for (1) the O−H group at 3800-3600 cm−1 and (2) the N−H group at 3250-3350 cm−1. The peak shift of the nitrile group (399.5 eV) to the amide group (399.7 eV) indicates the hydrolysis of acrylonitrile in the ABS polymer, resulting in the formation of the amide group. Furthermore, changes in hydrophilicity and thermal stability support the chemical composition change in ABS. These findings suggest that K. aerogenes EM011 and B. nitrificans ABS-02 play a role in accelerating the biodegradation of EVA and ABS plastics. This study provides insight into how microbes contribute to the degradation of ABS plastics. Keywords: Ethylene vinyl acetate (EVA), acrylonitrile butadiene styrene (ABS), Biodegradation, Klebsiella aerogenes, Brevibacillus nitrificans|육상이나 해양 환경에 플라스틱 폐기물이 대량으로 축적되는 것은 전 세계적으로 중요한 환경 문제 중 하나입니다. 미생물, 곤충 유충 및 효소에 의한 플라스틱 생분해는 환경친화적인 부산물을 생성하여 환경적인 플라스틱 폐기물 문제를 해결하는 이러한 전략의 능력으로 인해 가장 널리 사용되는 방법 중 하나가 되었습니다. 본 연구에서는 에틸렌 비닐 아세테이트(EVA)와 아크릴로니트릴 부타디엔 스티렌(ABS)의 생분해를 평가했습니다. 유용 미생물액에서 분리된 Klebsiella aerogenes EM011 균주는 EVA 플라스틱의 생분해와 관련이 있습니다. 이 연구에 따르면 K. aerogenes EM011 은 EVA 필름을 유일한 에너지원으로 사용하여 무탄소 배지에서 30 일 동안 생존할 수 있으며, EVA 필름 1g 의 0.65 ± 0.04%를 분해합니다. K. aerogenes EM011 로 처리한 후 scanning electron microscopy 을 사용하여 필름의 표면 변화를 감지했습니다. 또한 energy-dispersive X-ray spectroscopy 에 의해 플라스틱 표면의 이미지 영역에서 원소 변형이 감지되었습니다. Fourier-transform infrared spectroscopy 및 X-ray photoelectron spectroscopy 분석을 수행하여 작용기 및 화학 성분의 변화를 감지하고 EVA 필름 표면의 변화를 설명했습니다. 이러한 물리화학적 분석을 통해 카르보닐기(C=O), 에스테르기(C-O) 및 하이드록실기(-OH)의 형성은 EVA 의 산화를 확인했습니다. 또한 산화는 EVA 필름의 분해로 이어져 열 안정성과 분자량 분포에 변화를 초래했습니다. ABS 생분해 측면에서 Brevibacillus nitrificans ABS-02 균주는 유용 미생물액 에서 분리된 것과 마찬가지로 ABS 플라스틱 필름을 분해할 수 있었습니다. 무탄소 배지에서 B. nitrificans ABS02 의 생존 가능성은 ABS 플라스틱을 탄소원으로 사용하면서 30 일 배양 기간까지 증식하는 세포 성장을 보였기 때문에 입증되었습니다. B. nitrificans ABS-02 는 SEM 분석에서 ABS 필름의 허용 가능한 표면 손상을 보였습니다. EDS 분석 결과, 처리 필름 표면의 손상된 부위에서 산소 축적이 감지되었습니다. B. nitrificans ABS-02 로 처리된 ABS 필름의 FT-IR 및 XPS 데이터는 화학 조성의 변화를 확인했으며, 3800-3600 cm-1 에서 (1) O-H 그룹의 새로운 피크가, 3250-3350 cm-1 에서 (2) N-H 그룹의 새로운 피크가 나타났습니다. 니트릴기(399.5 eV)가 아미드기(399.7 eV)로 변경된 것은 ABS 폴리머에서 아크릴로니트릴이 가수분해되어 백본에 아미드기가 생성된다는 것을 나타냅니다. 또한 친수성 및 열 안정성의 변형은 ABS 의 화학 조성 변화를 뒷받침했습니다. 이러한 연구 결과는 K. aerogenes EM011 및 B. nitrificans ABS-02 균주가 각각 EVA 및 ABS 플라스틱의 생분해를 가속화하는 역할을 한다는 것을 보여줍니다.
Table Of Contents
I. Introduction 1 II. Part 1. The biodegradation of ethylene vinyl acetate (EVA) by Klebsiella aerogenes EM011 2.1. Background 3 2.2. Material and Method 4 2.2.1. Preparation of EVA film for experiment and bacterial strain 4 2.2.2. Bacterial growth rate on EVA 4 2.2.3. EVA weight loss measurement 4 2.2.4. Treatment of the EVA films by the K. aerogenes EM011 strain 5 2.2.5. Field emission scanning electron microscopy 5 2.2.6. Energy-dispersive X-ray spectroscopy 5 2.2.7. Fourier-transform infrared spectroscopy 6 2.2.8. X-ray photoelectron spectroscopy 6 2.2.9. Contact angle measurements 6 2.2.10. Thermogravimetric analysis 6 2.2.11. High-temperature gel permeation chromatography analysis 7 2.2.12. Statistical analysis 7 2.3. Results 7 2.3.1. EVA degradation related to bacterial cell growth 7 2.3.2. Field emission scanning electron microscopy and Energy-dispersive X-ray spectroscopy analyses after the bacterial treatment of the EVA films 8 2.3.3. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses after the bacterial treatment of the EVA films 10 2.3.4. Contact angle measurements after the bacterial treatment of the EVA films 12 2.3.5. Thermogravimetric analysis after the bacterial treatment of the EVA films 14 2.3.6. High-temperature gel permeation chromatography analysis after the bacterial treatment of the EVA films 15 2.4. Discussion 16 III. Part 2. The biodegradation of acrylonitrile butadiene styrene (ABS) by Brevibacillus nitrificans ABS-02 3.1. Background 19 3.2. Material and Method 20 3.2.1. Preparation of ABS film for experiment and bacterial strain 20 3.2.2. Bacterial growth rate on ABS-enriched medium as carbon source 21 3.2.3. ABS weight loss measurement 21 3.2.4. Treatment of the ABS films by the B. nitrificans ABS-02 strain 22 3.2.5. Field emission scanning electron microscopy 22 3.2.6. Energy-dispersive X-ray spectroscopy 22 3.2.7. Fourier-transform infrared spectroscopy 23 3.2.8. X-ray photoelectron spectroscopy 23 3.2.9. Contact angle measurements 23 3.2.10. Thermogravimetric analysis 23 3.2.11. Statistical analysis 24 3.3. Results 24 3.3.1. ABS degradation related to bacterial cell growth 24 3.3.2. Field emission scanning electron microscopy and Energy-dispersive X-ray spectroscopy analyses after the bacterial treatment of the ABS films 25 3.3.3. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses after the bacterial treatment of the ABS films 27 3.3.4. Contact angle measurement after the bacterial treatment of the ABS films 30 3.3.5. Thermogravimetric analysis after the bacterial treatment of the ABS films 31 3.4. Discussion 32 IV. Conclusion 35 V. References 36 Abstract in Korean 42