Detail View

Optimized Red Blood Cell Segmentation in Holographic Imaging through Integration of Self-Supervised Learning and Diffusion Models
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 문인규 -
dc.contributor.author Hyunbin An -
dc.date.accessioned 2025-02-28T21:01:42Z -
dc.date.available 2025-02-28T21:01:42Z -
dc.date.issued 2025 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58017 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000828659 -
dc.description Red blood cells, Digital Holography, Deep Learning, Diffusion Model, Self-Supervised learning -
dc.description.tableofcontents I. INTRODUCTION 1
II. METHODOLOGY 6
2.1 Data Acquisition 6
2.2 Digital Holographic Microscopy 7
2.3 Synthetic RBC Image Generation Using Diffusion Model 9
2.4 Self-Supervised Learning for Pretrained Model 13
2.5 Watershed Algorithm 16
2.6 Evaluation Metrics 17
III. EXPERIMENTAL SETUPS 18
3.1 Datasets 18
3.2 Implementation Setups 18
IV. RESULTS 20
4.1 Generated Synthetic RBC Data 20
4.2 Semantic Segmentation 21
4.3 Effectiveness of Losses in Self-Supervised Learning 24
4.4 Experiments on the Effect of SSCRL in Limited Training Data 25
4.5 Phenotypical Assessment of Red Blood Cells 26
V. CONCLUSION 27
-
dc.format.extent 32 -
dc.language eng -
dc.publisher DGIST -
dc.title Optimized Red Blood Cell Segmentation in Holographic Imaging through Integration of Self-Supervised Learning and Diffusion Models -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000828659 -
dc.description.degree Master -
dc.contributor.department Department of Robotics and Mechatronics Engineering -
dc.identifier.bibliographicCitation Hyunbin An. (2025). Optimized Red Blood Cell Segmentation in Holographic Imaging through Integration of Self-Supervised Learning and Diffusion Models. doi: 10.22677/THESIS.200000828659 -
dc.contributor.coadvisor Youhyun Kim -
dc.date.awarded 2025-02-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RM 안94 202502 -
dc.date.accepted 2025-01-20 -
dc.contributor.alternativeDepartment 로봇및기계전자공학과 -
dc.subject.keyword Red blood cells, Digital Holography, Deep Learning, Diffusion Model, Self-Supervised learning -
dc.contributor.affiliatedAuthor Hyunbin An -
dc.contributor.affiliatedAuthor Inkyu Moon -
dc.contributor.affiliatedAuthor Youhyun Kim -
dc.contributor.alternativeName 안현빈 -
dc.contributor.alternativeName Inkyu Moon -
dc.contributor.alternativeName 김유현 -
dc.rights.embargoReleaseDate 2030-02-28 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads