WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 최홍수 | - |
| dc.contributor.author | Sebeen Lee | - |
| dc.date.accessioned | 2025-02-28T21:01:54Z | - |
| dc.date.available | 2025-02-28T21:01:54Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/58028 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000828653 | - |
| dc.description | Microfluidic chip platform, Micro-organ, 3D culture, High-Throughput Screening, Transwell | - |
| dc.description.abstract | Current preclinical experiments for drug evaluation mainly rely on conventional two- dimensional cell cultures conducted in static environments that lack interaction with the external materials. This approach is inefficient and too simplistic, and often involves the use of animal models, which are costly and exhibit discrepancies in accuracy and similarity to humans. To overcome these limitations, the Body-on-a-Chip (BoC) technology using robust and flexible three-dimensional microtissues is emerging. BoC represents a microphysiological system that mimics the physiology and functionality of human organs in vitro, applied in drug development for toxicity screening and personalized medicine. Utilizing a 96-well based microfluidic chip, drug effects on multi-organs can be efficiently predicted and assessed. Applying the characteristic of drug metabolism by the liver upon administration in the body, it can demonstrate the conversion of the cardiac toxic compound Terfenadine into the non-cardiotoxic metabolite Fexofenadine within liver microtissues, proving physiological-pathological responses of cardiac microtissues. The development of an optimized liver-heart on a chip platform demonstrates multi-tissue functionality, emphasizing the significance of continuous media circulation and tissue interactions. Furthermore, a second platform was developed by integrating the Transwell system into the device. The membrane-separated interface allowed for the cultivation and study of various cell types, such as muscle and vascular cells. This resulted in a multifunctional, high- throughput drug screening platform capable of supporting 2D, 3D and 3D Transwell cell cultures. The functionality and efficacy of multi-micro-organ Transwell device were demonstrated through drug evaluation using 5-FU.|현재 약물 평가를 위한 전임상 실험은 정적인 환경에서 외부 물질과의 상호작용이 결여된 기존의 2차원 세포 배양에 의존하고 있다. 이러한 방법은 지나치게 단순하고 비효율적이며, 정확도와 구현성이 떨어진다. 또한 세포 배양 외에도 동물 실험이 진행되는데, 이러한 방법은 상당히 많은 비용이 들뿐만 아니라 인간과의 유사성에 차이가 나고, 윤리적인 문제도 가지고 있다. 이러한 한계를 극복하기 위해, 견고하고 유연한 3차원 미세조직을 사용하는 바디-온-어-칩 기술이 부상하고 있다. 바디-온-어-칩은 인간 장기의 생리학과 기능을 시험관 내에서 모사하는 미세 생리학적 시스템으로, 약물 독성 스크리닝 및 맞춤형 의료를 위한 약물 개발에 적용된다. 96-웰 기반의 미세유체 칩을 활용하여 다중 장기에 대한 약물의 효과를 효율적으로 예측하고 평가할 수 있다. 그에 대한 첫 번째 연구에서는, 체내 투여 시 간에 의한 약물 대사 특성을 활용하여 간-심장 칩 플랫폼에 대한 실험을 진행하였다. 심장 독성을 유발하는 화합물인 테르페나딘이 간 미세조직 내에서 비심장독성 대사체인 펙소페나딘으로 전환되는 과정을 시연함으로써 약물에 대한 심장 미세조직의 생리병리학적 반응을 입증하였다. 간-심장 칩 플랫폼의 최적화 과정을 통해 다중 조직 기능을 보여주며, 지속적인 배지 순환과 조직 간의 상호작용의 중요성을 강조한다. 나아가, 트렌스웰 시스템을 디바이스에 통합하여 두 번째 플랫폼이 연구되었다. 막으로 분리된 인터페이스를 통해 근육 및 혈관 세포와 같은 다양한 세포 유형의 배양과 실험이 가능한 도구를 개발하였다. 이로 인해 2차원, 3차원 및 3차원 트렌스웰 세포 배양을 지원할 수 있는 다기능 고처리량 약물 스크리닝 플랫폼이 완성되었다. 다중 미세 장기 트렌스웰 장치의 기능성과 효과는 항암제를 이용한 약물 평가를 통해 확인하였다. |
- |
| dc.description.tableofcontents | Ⅰ. Introduction 1 1.1 Background 1 1.1.1 Drug evaluation 1 1.1.2 Microphysiological systems, Organs-on-a chip 3 1.2 Research trends 5 1.2.1 Microfluidic device for drug screening 5 1.2.2 Structure and application of BoC 8 1.2.2.1 Single-organ-on-a-chip 9 1.2.2.2 Multi-organ-on-a-chip 11 1.3 Aims of this research 13 ⅠI. 96-well format-based liver-heart on a chip platform to investigate cardiotoxicity of drugs metabolized by a liver 17 2.1 Introduction 17 2.1.1 Background 17 2.1.2 Goal 19 2.2 Materials & Methods 20 2.2.1 Microfluidic chip design and fabrication 20 2.2.2 Tilting tower system for facile handling of the device and gravity-driven perfusion 23 2.2.3 Human hepatic and cardiac MTs fabrication 24 2.2.4 MT culture under static and perfusion conditions 26 2.2.5 Drug dose-response curve of individual MT 27 2.2.6 Pro-drug, TFND, bioactivation in the Liver-Heart on a chip 28 2.2.7 Morphological size measurement 28 2.2.8 Cell-based assay for viability 29 2.2.9 Biochemical assay for liver functionality 30 2.2.10 Beating measurement for cardiac functionality 31 2.2.11 Immune-fluorescence confocal imaging 31 2.3 Experimental results 33 2.3.1 Microfluidic device and setup 33 2.3.2 Drug dose-response tests for pro-drug bioactivation in the Liver-Heart on a chip 34 2.3.3 Toxicity characterization of TFND on LiMTs and CdMTs with liver bioactivation 37 2.4 Conclusion & Discussion 44 IⅠI. 96-well format-based multi-micro-organ chip platform with Transwell for parallel drug testing among multiple micro-organoids 46 3.1 Introduction 46 3.1.1 Background 46 3.1.2 Goal 48 3.2 Materials & Methods 49 3.2.1 Transwell-based microfluidic chip design and fabrication 49 3.2.2 Tilting tower or gravity driven perfusion system 50 3.2.3 Culturing of microtissues 50 3.2.4 Loading tissues on the insert and microfluidic device 52 3.2.5 Drug dose-response curve of tumor MT 53 3.2.6 5-FU drug activation in the Muscle/Vascular-Liver Cancer-Colon Cancer on a chip 54 3.3 Experimental results 54 3.3.1 Cell cultivation on the membrane filter 54 3.3.2 Transwell insert overflowing testing 55 3.3.3 Drug dose-response tests of tumor MT 56 3.3.4 Toxicity characterization of 5-FU on micro-organoids 56 3.4 Conclusion & Discussion 59 IV. Conclusion 61 4.1 Overall conclusion 61 4.2 Future work 63 4.2.1 Implementing a multi-micro-organ chip platform with BBB 63 4.2.2 Injection molding process for 96-well format-based microfluidic chip platform with mass production capability 64 4.2.3 Developing inserts with sensor that can implement cell contraction using Transwell-based platform 64 Reference 66 요약문 70 |
- |
| dc.format.extent | 70 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | SLAS standard (96-well) format-based multi-micro-organ chip platform for parallel drug testing with interaction among multiple micro-organoids | - |
| dc.title.alternative | 마이크로 오가노이드 간의 상호작용을 통한 약물 테스트를 위한 표준 96 -웰 기반의 다중 미세 장기 칩 플랫폼 개발 | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000828653 | - |
| dc.description.degree | Master | - |
| dc.contributor.department | Department of Robotics and Mechatronics Engineering | - |
| dc.identifier.bibliographicCitation | Sebeen Lee. (2025). SLAS standard (96-well) format-based multi-micro-organ chip platform for parallel drug testing with interaction among multiple micro-organoids. doi: 10.22677/THESIS.200000828653 | - |
| dc.contributor.coadvisor | Jin-young Kim | - |
| dc.date.awarded | 2025-02-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.RM 이54 202502 | - |
| dc.date.accepted | 2025-01-20 | - |
| dc.contributor.alternativeDepartment | 로봇및기계전자공학과 | - |
| dc.subject.keyword | Microfluidic chip platform, Micro-organ, 3D culture, High-Throughput Screening, Transwell | - |
| dc.contributor.affiliatedAuthor | Sebeen Lee | - |
| dc.contributor.affiliatedAuthor | Hongsoo Choi | - |
| dc.contributor.affiliatedAuthor | Jin-young Kim | - |
| dc.contributor.alternativeName | 이세빈 | - |
| dc.contributor.alternativeName | Hongsoo Choi | - |
| dc.contributor.alternativeName | 김진영 | - |
| dc.rights.embargoReleaseDate | 2030-02-28 | - |