WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Min | - |
| dc.contributor.author | Baek, Seungjae | - |
| dc.contributor.author | Cha, Sangbin | - |
| dc.contributor.author | Hyun, Eugin | - |
| dc.contributor.author | Jin, Youngseok | - |
| dc.contributor.author | Bae, Jieun | - |
| dc.contributor.author | Choi, Inoh | - |
| dc.date.accessioned | 2025-03-06T17:40:16Z | - |
| dc.date.available | 2025-03-06T17:40:16Z | - |
| dc.date.created | 2025-02-07 | - |
| dc.date.issued | 2025-02 | - |
| dc.identifier.issn | 1530-437X | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/58127 | - |
| dc.description.abstract | Compact radar sensors for the Internet of Things (IoT) applications can be used to analyze indoor human gait characteristics. Conventional human gait analysis methods typically involve generating 2-D high-resolution time-frequency images and employing image processing techniques to estimate the gait parameters of a walking human. However, these computations can be resource-intensive for compact radar sensors. To address this problem, we propose a new scheme for estimating gait parameters. Our method has four significant contributions: 1) utilization of 1-D phase modulation in a radar echo for efficient gait parameter estimation, as opposed to relying on 2-D time-frequency images; 2) decomposition of microphase modulations corresponding to the torso or pelvis and lower body parts (e.g., knee, tibia, and ankle) using dedicated filtering techniques to mitigate the interference between body components; 3) compensation for effects of nonlinear macrophase modulation caused by whole-body movements; and 4) robust estimation of gait parameters, including time-varying radial velocity, gait rate, step length, and the height of the lower body. In experiments performed using a 5.8-GHz continuous-wave (CW) Doppler radar, we observed that the proposed scheme can perform efficient and robust gait parameter estimation of indoor human walking. © 2025 IEEE. | - |
| dc.language | English | - |
| dc.publisher | Institute of Electrical and Electronics Engineers | - |
| dc.title | Biomechanical Parameters Estimation for Real-Time Gait Analysis Using a Compact Radar Sensor | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1109/JSEN.2024.3514072 | - |
| dc.identifier.wosid | 001422055600003 | - |
| dc.identifier.scopusid | 2-s2.0-85216342899 | - |
| dc.identifier.bibliographicCitation | Kim, Min. (2025-02). Biomechanical Parameters Estimation for Real-Time Gait Analysis Using a Compact Radar Sensor. IEEE Sensors Journal, 25(4), 6620–6633. doi: 10.1109/JSEN.2024.3514072 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | Compact radar sensor | - |
| dc.subject.keywordAuthor | indoor human gait analysis | - |
| dc.subject.keywordAuthor | micro-Doppler signature | - |
| dc.subject.keywordAuthor | phase modulation | - |
| dc.subject.keywordPlus | EXTRACTION | - |
| dc.subject.keywordPlus | WALKING | - |
| dc.subject.keywordPlus | SPEED | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.citation.endPage | 6633 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 6620 | - |
| dc.citation.title | IEEE Sensors Journal | - |
| dc.citation.volume | 25 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering; Instruments & Instrumentation; Physics | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied | - |
| dc.type.docType | Article | - |