Detail View

Hypergraph-Based Source Codes for Function Computation Under Maximal Distortion
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Basu, Sourya -
dc.contributor.author Seo, Daewon -
dc.contributor.author Varshney, Lav R. -
dc.date.accessioned 2025-03-12T19:10:19Z -
dc.date.available 2025-03-12T19:10:19Z -
dc.date.created 2025-03-10 -
dc.date.issued 2022-12 -
dc.identifier.issn 2641-8770 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58151 -
dc.description.abstract This work investigates functional source coding problems with maximal distortion, motivated by approximate function computation in many modern applications. The maximal distortion treats imprecise reconstruction of a function value as good as perfect computation if it deviates less than a tolerance level, while treating reconstruction that differs by more than that level as a failure. Using a geometric understanding of the maximal distortion, we propose a hypergraph-based source coding scheme for function computation that is constructive in the sense that it gives an explicit procedure for finding optimal or good auxiliary random variables. Moreover, we find that the hypergraph-based coding scheme achieves the optimal rate-distortion function in the setting of coding for computing with side information and achieves the Berger-Tung sum-rate inner bound in the setting of distributed source coding for computing. It also achieves the El Gamal-Cover inner bound for multiple description coding for computing and is optimal for successive refinement and cascade multiple description problems for computing. Lastly, the benefit of complexity reduction of finding a forward test channel is shown for a class of Markov sources. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Hypergraph-Based Source Codes for Function Computation Under Maximal Distortion -
dc.type Article -
dc.identifier.doi 10.1109/JSAIT.2022.3232222 -
dc.identifier.wosid 001395976300020 -
dc.identifier.scopusid 2-s2.0-85180611020 -
dc.identifier.bibliographicCitation Basu, Sourya. (2022-12). Hypergraph-Based Source Codes for Function Computation Under Maximal Distortion. IEEE Journal on Selected Areas in Information Theory, 3(4), 824–838. doi: 10.1109/JSAIT.2022.3232222 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor distributed source coding -
dc.subject.keywordAuthor Coding for computing -
dc.subject.keywordAuthor functional compression -
dc.subject.keywordAuthor hypergraph -
dc.subject.keywordPlus SUCCESSIVE REFINEMENT -
dc.subject.keywordPlus SIDE INFORMATION -
dc.subject.keywordPlus MULTIPLE -
dc.subject.keywordPlus RATES -
dc.citation.endPage 838 -
dc.citation.number 4 -
dc.citation.startPage 824 -
dc.citation.title IEEE Journal on Selected Areas in Information Theory -
dc.citation.volume 3 -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science; Engineering -
dc.relation.journalWebOfScienceCategory Computer Science, Information Systems; Computer Science, Theory & Methods; Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

서대원
Seo, Daewon서대원

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads