Detail View

Validating the Virtual Calendering Process With 3D-Reconstructed Composite Electrode: An Optimization Framework for Electrode Design
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lim, Jaejin -
dc.contributor.author Song, Jihun -
dc.contributor.author Kim, Kyung-Geun -
dc.contributor.author Koo, Jin Kyo -
dc.contributor.author Lee, Hyobin -
dc.contributor.author Kang, Dongyoon -
dc.contributor.author Kim, Young-Jun -
dc.contributor.author Park, Joonam -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2025-04-07T14:10:14Z -
dc.date.available 2025-04-07T14:10:14Z -
dc.date.created 2025-03-27 -
dc.date.issued 2025-07 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/58212 -
dc.description.abstract Calendering is an essential fabrication step for lithium-ion battery electrodes, aimed at achieving the target density through mechanical compression. During this process, the electrode's microstructure significantly deforms, affecting its electrochemical performance. Therefore, it is important to understand how the microstructure evolves during calendering and correlate these changes with electrochemical behavior. Despite tremendous experimental efforts, there are limitations in obtaining sufficient outcomes. In this regard, simulations offer valuable information; however, the highest priority is to develop a reliable modeling framework that reflects actual microstructural changes and establish a robust validating methodology. Without such a framework, computational predictions may not align with experimental results. This study develops a virtual calendering framework based on high-resolution FIB-SEM tomography images of a bimodal LiNi0.6Co0.2Mn0.2O2 cathode with a mass loading of 19.8 mg cm-2 and 96 wt.% active material. The framework is rigorously validated through systematically designed experiments across various electrode densities (2.3-4.0 g cm-3) and further analysis of hidden microstructural features, such as ionic tortuosity, contact area, and crack structure through additional tomography analysis. The virtual calendering framework successfully predicts microstructural changes and electrochemical performance, offering a reliable pathway for identifying optimal design parameters in a time- and cost-effective manner. -
dc.language English -
dc.publisher Wiley -
dc.title Validating the Virtual Calendering Process With 3D-Reconstructed Composite Electrode: An Optimization Framework for Electrode Design -
dc.type Article -
dc.identifier.doi 10.1002/smll.202410485 -
dc.identifier.wosid 001445637900001 -
dc.identifier.scopusid 2-s2.0-105000389421 -
dc.identifier.bibliographicCitation Lim, Jaejin. (2025-07). Validating the Virtual Calendering Process With 3D-Reconstructed Composite Electrode: An Optimization Framework for Electrode Design. Small, 21(27). doi: 10.1002/smll.202410485 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Digital Twin -
dc.subject.keywordAuthor Electrode density -
dc.subject.keywordAuthor microstructure -
dc.subject.keywordAuthor Modeling and Simulation -
dc.subject.keywordAuthor Virtual calendering process -
dc.subject.keywordPlus FFT-BASED HOMOGENIZATION -
dc.subject.keywordPlus MICROSTRUCTURAL EVOLUTION -
dc.subject.keywordPlus POROUS-MEDIA -
dc.subject.keywordPlus ION -
dc.subject.keywordPlus TORTUOSITY -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus PERMEABILITY -
dc.subject.keywordPlus TOMOGRAPHY -
dc.subject.keywordPlus COMPACTION -
dc.citation.number 27 -
dc.citation.title Small -
dc.citation.volume 21 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads