Detail View

Multimodal Classification of Motion Sickness Using EEG, fNIRS, and IMU Signals
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Hyunmin -
dc.contributor.author Kim, Taehun -
dc.contributor.author An, Jinung -
dc.date.accessioned 2025-06-12T10:40:15Z -
dc.date.available 2025-06-12T10:40:15Z -
dc.date.created 2025-04-18 -
dc.date.issued 2025-02-26 -
dc.identifier.isbn 9798331521929 -
dc.identifier.issn 2572-7672 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58408 -
dc.description.abstract Motion sickness is characterized by nausea, dizziness, and vomiting, often caused by sensory conflict during passive motion. This study addresses the limitations of existing single-modal approaches by using a multimodal classification framework that integrates electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and inertial measurement unit (IMU) signals. Data from 12 participants were analyzed using a transformer-based model. The EEG + fNIRS model achieved the highest k-fold cross-validation accuracy (79.51%) and AUC (85.36%) but had limited leave-one-subject-out performance (<60%). Model interpretation identified EEG features, particularly from PO7, as the most critical, with IMU features such as Z-axis acceleration providing complementary information. While the approach demonstrates the potential of multimodal classification, challenges in intersubject generalization require further refinement. © 2025 IEEE. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers Inc. -
dc.relation.ispartof International Winter Conference on Brain-Computer Interface, BCI -
dc.title Multimodal Classification of Motion Sickness Using EEG, fNIRS, and IMU Signals -
dc.type Conference Paper -
dc.identifier.doi 10.1109/BCI65088.2025.10931379 -
dc.identifier.wosid 001471781800017 -
dc.identifier.scopusid 2-s2.0-105002285690 -
dc.identifier.bibliographicCitation Lee, Hyunmin. (2025-02-26). Multimodal Classification of Motion Sickness Using EEG, fNIRS, and IMU Signals. 13th International Winter Conference on Brain-Computer Interface, BCI 2025, 1–5. doi: 10.1109/BCI65088.2025.10931379 -
dc.identifier.url https://brain.korea.ac.kr/bci2025/technicalprogram.php -
dc.citation.conferenceDate 2025-02-24 -
dc.citation.conferencePlace KO -
dc.citation.conferencePlace Hybrid, 정선 -
dc.citation.endPage 5 -
dc.citation.startPage 1 -
dc.citation.title 13th International Winter Conference on Brain-Computer Interface, BCI 2025 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

안진웅
An, Jinung안진웅

Division of Intelligent Robotics

read more

Total Views & Downloads