WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | An, Youngwoo | - |
| dc.contributor.author | Eun, Yongsoon | - |
| dc.date.accessioned | 2025-06-19T15:10:09Z | - |
| dc.date.available | 2025-06-19T15:10:09Z | - |
| dc.date.created | 2025-06-12 | - |
| dc.date.issued | 2025-06 | - |
| dc.identifier.issn | 1598-6446 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/58488 | - |
| dc.description.abstract | This paper presents a fault detection and toleration scheme for Unmanned Ground Vehicles (UGVs) with two position sensors and orientation sensors. Four representative types of sensor faults are considered: complete fault, bias fault, drift fault, and precision degradation. The proposed detection method consists of a Long Short-Term Memory (LSTM) Network Module, an Amplitude Difference Thresholding Module, and an Actuation Motion Coherence Module. A Husarion Rosbot 2.0 and VICON motion capture system compose a platform that is used to collect motion data for network training and experimental validation of the proposed scheme. Sensor fault detection performance is experimentally validated using a trajectory that was not included in the training data set. The fault detection accuracy is compared to other learning-based fault detection methods. Based on the fault detection result, we propose the fault toleration method. © ICROS, KIEE and Springer 2025. | - |
| dc.language | English | - |
| dc.publisher | 제어·로봇·시스템학회 | - |
| dc.title | Online Sensor Fault Detection and Toleration for Four-wheeled Skid-steered UGV | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1007/s12555-024-0835-y | - |
| dc.identifier.wosid | 001507857800016 | - |
| dc.identifier.scopusid | 2-s2.0-105007760075 | - |
| dc.identifier.bibliographicCitation | An, Youngwoo. (2025-06). Online Sensor Fault Detection and Toleration for Four-wheeled Skid-steered UGV. International Journal of Control, Automation, and Systems, 23(6), 1839–1850. doi: 10.1007/s12555-024-0835-y | - |
| dc.identifier.kciid | ART003208554 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | Deep learning | - |
| dc.subject.keywordAuthor | fault toleration | - |
| dc.subject.keywordAuthor | four-wheel unmanned ground vehicle | - |
| dc.subject.keywordAuthor | neural network | - |
| dc.subject.keywordAuthor | sensor fault detection | - |
| dc.subject.keywordPlus | UNMANNED GROUND VEHICLES | - |
| dc.subject.keywordPlus | ISOLATION SYSTEM | - |
| dc.subject.keywordPlus | DIAGNOSIS | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.subject.keywordPlus | DESIGN | - |
| dc.subject.keywordPlus | URBAN | - |
| dc.citation.endPage | 1850 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 1839 | - |
| dc.citation.title | International Journal of Control, Automation, and Systems | - |
| dc.citation.volume | 23 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Automation & Control Systems | - |
| dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
| dc.type.docType | Article | - |
Department of Electrical Engineering and Computer Science