Detail View

Online Sensor Fault Detection and Toleration for Four-wheeled Skid-steered UGV
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author An, Youngwoo -
dc.contributor.author Eun, Yongsoon -
dc.date.accessioned 2025-06-19T15:10:09Z -
dc.date.available 2025-06-19T15:10:09Z -
dc.date.created 2025-06-12 -
dc.date.issued 2025-06 -
dc.identifier.issn 1598-6446 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58488 -
dc.description.abstract This paper presents a fault detection and toleration scheme for Unmanned Ground Vehicles (UGVs) with two position sensors and orientation sensors. Four representative types of sensor faults are considered: complete fault, bias fault, drift fault, and precision degradation. The proposed detection method consists of a Long Short-Term Memory (LSTM) Network Module, an Amplitude Difference Thresholding Module, and an Actuation Motion Coherence Module. A Husarion Rosbot 2.0 and VICON motion capture system compose a platform that is used to collect motion data for network training and experimental validation of the proposed scheme. Sensor fault detection performance is experimentally validated using a trajectory that was not included in the training data set. The fault detection accuracy is compared to other learning-based fault detection methods. Based on the fault detection result, we propose the fault toleration method. © ICROS, KIEE and Springer 2025. -
dc.language English -
dc.publisher 제어·로봇·시스템학회 -
dc.title Online Sensor Fault Detection and Toleration for Four-wheeled Skid-steered UGV -
dc.type Article -
dc.identifier.doi 10.1007/s12555-024-0835-y -
dc.identifier.wosid 001507857800016 -
dc.identifier.scopusid 2-s2.0-105007760075 -
dc.identifier.bibliographicCitation An, Youngwoo. (2025-06). Online Sensor Fault Detection and Toleration for Four-wheeled Skid-steered UGV. International Journal of Control, Automation, and Systems, 23(6), 1839–1850. doi: 10.1007/s12555-024-0835-y -
dc.identifier.kciid ART003208554 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Deep learning -
dc.subject.keywordAuthor fault toleration -
dc.subject.keywordAuthor four-wheel unmanned ground vehicle -
dc.subject.keywordAuthor neural network -
dc.subject.keywordAuthor sensor fault detection -
dc.subject.keywordPlus UNMANNED GROUND VEHICLES -
dc.subject.keywordPlus ISOLATION SYSTEM -
dc.subject.keywordPlus DIAGNOSIS -
dc.subject.keywordPlus MODEL -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus URBAN -
dc.citation.endPage 1850 -
dc.citation.number 6 -
dc.citation.startPage 1839 -
dc.citation.title International Journal of Control, Automation, and Systems -
dc.citation.volume 23 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.relation.journalResearchArea Automation & Control Systems -
dc.relation.journalWebOfScienceCategory Automation & Control Systems -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

은용순
Eun, Yongsoon은용순

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads