Detail View

An Enhanced Noise Removal-based SAR Image Recognition using DnCNN and Wavelet Transform
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Choi, Youngdoo -
dc.contributor.author Kim, Geunhwan -
dc.contributor.author Kim, Bongseok -
dc.contributor.author Kim, Sangdong -
dc.date.accessioned 2025-07-02T17:10:09Z -
dc.date.available 2025-07-02T17:10:09Z -
dc.date.created 2025-06-30 -
dc.date.issued 2025-09 -
dc.identifier.issn 1210-2512 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58558 -
dc.description.abstract This paper presents an enhanced method for noise removal and target detection in Synthetic Aperture Radar (SAR) images using a Denoising Convolutional Neural Network (DnCNN) combined with wavelet transform. Unlike conventional method, the proposed framework focuses on remove the Speckle Noise through residual learning and wavelet transform. The DnCNN architecture, consisting of 29 layers, efficiently removes noise while preserving high-frequency image features. The integration of wavelet transform further enhances noise removal and feature preservation. Experimental results demonstrate that the recognition rate of the proposed method improves by about 94% compared to original method under 10 dB Speckle Noise conditions. This method outperforms conventional algorithm in SAR image processing, making it highly suitable for applications in noisy environments. -
dc.language English -
dc.publisher Brno University of Technology -
dc.title An Enhanced Noise Removal-based SAR Image Recognition using DnCNN and Wavelet Transform -
dc.type Article -
dc.identifier.doi 10.13164/re.2025.0429 -
dc.identifier.wosid 001530559600005 -
dc.identifier.scopusid 2-s2.0-105015307411 -
dc.identifier.bibliographicCitation Radioengineering, v.34, no.3, pp.429 - 437 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Navy SAR -
dc.subject.keywordAuthor noise -
dc.subject.keywordAuthor Convolutional Neural Network (CNN) -
dc.subject.keywordAuthor Denoising Convolutional Neural Network (DnCNN) -
dc.subject.keywordAuthor wavelet transform -
dc.identifier.url https://www.radioeng.cz/fulltexts/2025/25_03_0429_0437.pdf -
dc.citation.endPage 437 -
dc.citation.number 3 -
dc.citation.startPage 429 -
dc.citation.title Radioengineering -
dc.citation.volume 34 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Engineering -
dc.relation.journalWebOfScienceCategory Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김상동
Kim, Sangdong김상동

Division of Mobility Technology

read more

Total Views & Downloads