Detail View

Moisture-Stable Argyrodites with High Ionic Conductivity via Crystal Structure Engineering: Li6+x M x As1-x S5I (M = Ge, Sn)
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Roh, Jihun -
dc.contributor.author Kim, Joowon -
dc.contributor.author Lee, Hyungjin -
dc.contributor.author Do, Namgyu -
dc.contributor.author Lyoo, Jeyne -
dc.contributor.author Manjon-Sanz, Alicia Maria -
dc.contributor.author Kitahara, Ginga -
dc.contributor.author Torii, Shuki -
dc.contributor.author Hong, Seung-Tae -
dc.date.accessioned 2025-07-02T18:10:11Z -
dc.date.available 2025-07-02T18:10:11Z -
dc.date.created 2025-05-29 -
dc.date.issued 2025-05 -
dc.identifier.issn 0897-4756 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58561 -
dc.description.abstract Sulfide solid electrolytes (SSEs) are promising alternatives to liquid electrolytes in lithium-ion batteries due to their high ionic conductivity and reduced flammability. However, their chemical instability under humid conditions poses significant challenges. This study introduces a substitution series, Li6+xMxAs1−xS5I (M = Ge, Sn), adopting an argyrodite-type structure with high ionic conductivity and moisture stability. Among these, Li6.333Ge0.333As0.667S5I achieves ∼3 mS cm−1 at 303 K, an improvement of 3 orders of magnitude over pristine Li6AsS5I. Powder X-ray and neutron diffraction patterns reveal additional lithium-ion sites enhancing 3D diffusion pathways, significantly lowering the activation energy. Li6.333Ge0.333As0.667S5I also demonstrates superior moisture stability, releasing minimal toxic H2S gas (70 ppm) after exposure to 27% relative humidity at 303 K for 1 h, outperforming Li6PS5Cl (160 ppm). Additionally, it retains ∼70% of its initial discharge capacity over 40 cycles of galvanostatic testing (In/InLi/ Li6.333Ge0.333As0.667S5I/TiS2). However, cycling beyond the electrochemical stability window leads to capacity fading. These findings provide insights into the interplay between crystal structure, ionic conductivity, and moisture stability, offering a pathway to high-performance solid electrolytes for next-generation all-solid-state batteries. © 2025 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Moisture-Stable Argyrodites with High Ionic Conductivity via Crystal Structure Engineering: Li6+x M x As1-x S5I (M = Ge, Sn) -
dc.type Article -
dc.identifier.doi 10.1021/acs.chemmater.5c00125 -
dc.identifier.wosid 001489063400001 -
dc.identifier.scopusid 2-s2.0-105005292952 -
dc.identifier.bibliographicCitation Chemistry of Materials, v.37, no.10, pp.3720 - 3732 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus TIS2 -
dc.subject.keywordPlus XPS -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus ORPIMENT -
dc.subject.keywordPlus ENARGITE -
dc.subject.keywordPlus BATTERY -
dc.subject.keywordPlus POWDER -
dc.subject.keywordPlus STATE -
dc.subject.keywordPlus SOLID ELECTROLYTES -
dc.subject.keywordPlus LI6PS5X X -
dc.citation.endPage 3732 -
dc.citation.number 10 -
dc.citation.startPage 3720 -
dc.citation.title Chemistry of Materials -
dc.citation.volume 37 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

홍승태
Hong, Seung-Tae홍승태

Department of Energy Science and Engineering

read more

Total Views & Downloads