Detail View

On the singular loci of higher secant varieties of Veronese embeddings
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Furukawa, Katsuhisa -
dc.contributor.author Han, Kangjin -
dc.date.accessioned 2025-07-03T18:40:10Z -
dc.date.available 2025-07-03T18:40:10Z -
dc.date.created 2025-05-23 -
dc.date.issued 2025-07 -
dc.identifier.issn 0075-4102 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/58597 -
dc.description.abstract The -th secant variety of a projective variety X subset of P N, denoted by sigma k ( X ), is defined to be the closure of the union of (k-1) -planes spanned by points on . In this paper, we examine the -th secant variety sigma k ( v d ( P n ) ) subset of P N of the image of the -uple Veronese embedding v d v_{d} of P n with N = ( n + d d ) - 1, and focus on the singular locus of sigma k ( v d ( P n ) ), which is only known for k <= 3 k\leq 3 . To study the singularity for arbitrary k , d , n k,d,n , we define the -subsecant locus of sigma k ( v d ( P n ) ) to be the union of sigma k ( v d ( P m ) ) with any -plane P m subset of P n. By investigating the projective geometry of moving embedded tangent spaces along subvarieties and using known results on the secant defectivity and the identifiability of symmetric tensors, we determine whether the -subsecant locus is contained in the singular locus of sigma k ( v d ( P n ) ) or not. Depending on the value of , these subsecant loci show an interesting trichotomy between generic smoothness, non-trivial singularity, and trivial singularity. In many cases, they can be used as a new source for the singularity of the -th secant variety of v d ( P n ) other than the trivial one, the (k-1) -th secant variety of v d ( P n ). We also consider the case of the fourth secant variety of v d ( P n ) by applying main results and computing conormal space via a certain type of Young flattening. Finally, we present some generalizations and discussions for further developments. -
dc.language English -
dc.publisher De Gruyter Brill -
dc.title On the singular loci of higher secant varieties of Veronese embeddings -
dc.type Article -
dc.identifier.doi 10.1515/crelle-2025-0027 -
dc.identifier.wosid 001478343400001 -
dc.identifier.scopusid 2-s2.0-105003978144 -
dc.identifier.bibliographicCitation Furukawa, Katsuhisa. (2025-07). On the singular loci of higher secant varieties of Veronese embeddings. Journal für die Reine und Angewandte Mathematik, 2025(824), 203–251. doi: 10.1515/crelle-2025-0027 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus IDENTIFIABILITY -
dc.subject.keywordPlus LINEAR-SYSTEMS -
dc.citation.endPage 251 -
dc.citation.number 824 -
dc.citation.startPage 203 -
dc.citation.title Journal für die Reine und Angewandte Mathematik -
dc.citation.volume 2025 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Mathematics -
dc.relation.journalWebOfScienceCategory Mathematics -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

한강진
Han, Kangjin한강진

Department of Liberal Arts and Sciences

read more

Total Views & Downloads