WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Furukawa, Katsuhisa | - |
| dc.contributor.author | Han, Kangjin | - |
| dc.date.accessioned | 2025-07-03T18:40:10Z | - |
| dc.date.available | 2025-07-03T18:40:10Z | - |
| dc.date.created | 2025-05-23 | - |
| dc.date.issued | 2025-07 | - |
| dc.identifier.issn | 0075-4102 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/58597 | - |
| dc.description.abstract | The -th secant variety of a projective variety X subset of P N, denoted by sigma k ( X ), is defined to be the closure of the union of (k-1) -planes spanned by points on . In this paper, we examine the -th secant variety sigma k ( v d ( P n ) ) subset of P N of the image of the -uple Veronese embedding v d v_{d} of P n with N = ( n + d d ) - 1, and focus on the singular locus of sigma k ( v d ( P n ) ), which is only known for k <= 3 k\leq 3 . To study the singularity for arbitrary k , d , n k,d,n , we define the -subsecant locus of sigma k ( v d ( P n ) ) to be the union of sigma k ( v d ( P m ) ) with any -plane P m subset of P n. By investigating the projective geometry of moving embedded tangent spaces along subvarieties and using known results on the secant defectivity and the identifiability of symmetric tensors, we determine whether the -subsecant locus is contained in the singular locus of sigma k ( v d ( P n ) ) or not. Depending on the value of , these subsecant loci show an interesting trichotomy between generic smoothness, non-trivial singularity, and trivial singularity. In many cases, they can be used as a new source for the singularity of the -th secant variety of v d ( P n ) other than the trivial one, the (k-1) -th secant variety of v d ( P n ). We also consider the case of the fourth secant variety of v d ( P n ) by applying main results and computing conormal space via a certain type of Young flattening. Finally, we present some generalizations and discussions for further developments. | - |
| dc.language | English | - |
| dc.publisher | De Gruyter Brill | - |
| dc.title | On the singular loci of higher secant varieties of Veronese embeddings | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1515/crelle-2025-0027 | - |
| dc.identifier.wosid | 001478343400001 | - |
| dc.identifier.scopusid | 2-s2.0-105003978144 | - |
| dc.identifier.bibliographicCitation | Furukawa, Katsuhisa. (2025-07). On the singular loci of higher secant varieties of Veronese embeddings. Journal für die Reine und Angewandte Mathematik, 2025(824), 203–251. doi: 10.1515/crelle-2025-0027 | - |
| dc.description.isOpenAccess | TRUE | - |
| dc.subject.keywordPlus | IDENTIFIABILITY | - |
| dc.subject.keywordPlus | LINEAR-SYSTEMS | - |
| dc.citation.endPage | 251 | - |
| dc.citation.number | 824 | - |
| dc.citation.startPage | 203 | - |
| dc.citation.title | Journal für die Reine und Angewandte Mathematik | - |
| dc.citation.volume | 2025 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.type.docType | Article | - |