WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Nketia-Yawson, Vivian | - |
| dc.contributor.author | Kim, Hae Jeong | - |
| dc.contributor.author | Lee, Ji Hyeon | - |
| dc.contributor.author | Ahn, Hyungju | - |
| dc.contributor.author | Nketia-Yawson, Benjamin | - |
| dc.contributor.author | Choi, Jongmin | - |
| dc.contributor.author | Jo, Jea Woong | - |
| dc.date.accessioned | 2025-08-20T19:10:09Z | - |
| dc.date.available | 2025-08-20T19:10:09Z | - |
| dc.date.created | 2025-07-10 | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.issn | 1229-9197 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/58928 | - |
| dc.description.abstract | Chemical substitution is a propitious strategy for optimizing the charge transport properties of pi-conjugated donor-acceptor (D-A) semiconducting materials in organic electronic devices. To explore the effects of fluorine substitution on the electronic and structural properties of organic field-effect transistors (OFETs) and photovoltaics (PVs), two new benzo[1,2-b:4,5-b ']dithiophene (BDT)-based hole transport polymers (HTPs) were synthesized and characterized. The BDT monomers consisting of 2,6-bis(trimethytin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b ']dithiophene monomer (BDT monomer), and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (FBDT monomer) were combined with 2,5-dibromofuran to produce BDT-Fu and FBDT-Fu HTPs. Fluorine integration significantly improved the molecular structure, optical, electrochemical, and morphological properties of these polymers, and the optoelectronic properties of the resulting devices. In FBDT-Fu, the fluorination enhanced crystallinity, optical absorption, and morphology, leading improvement in hole mobility of 3.49 x 10-3 cm2 V-1 s-1 in optimized poly(methyl methacrylate) (PMMA)-gated OFETs, with an on/off current ratio exceeding 103. Consequently, FBDT-Fu-based silver bismuth sulfide (AgBiS2) nanocrystal PVs achieved a power conversion efficiency of 5.5%, a high fill factor of 55.46%, and an open-circuit voltage of 0.504 V under 1-sun illumination. This molecular design strategy offers an effective approach for optimizing the electrical properties of organic conjugated semiconductors for next-generation optoelectronic devices. | - |
| dc.language | English | - |
| dc.publisher | Springer Nature | - |
| dc.title | Backbone Fluorination of Benzodithiophene-Based Hole-Transporting Polymers for Enhanced Organic Transistors and Nanocrystal Photovoltaics | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1007/s12221-025-01039-3 | - |
| dc.identifier.wosid | 001522669100001 | - |
| dc.identifier.scopusid | 2-s2.0-105009619891 | - |
| dc.identifier.bibliographicCitation | Fibers and Polymers, v.26, no.9, pp.3721 - 3728 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | Charge transport | - |
| dc.subject.keywordAuthor | Organic field-effect transistors | - |
| dc.subject.keywordAuthor | Nanocrystal photovoltaics | - |
| dc.subject.keywordAuthor | Hole transport polymer | - |
| dc.subject.keywordPlus | BENZOTHIADIAZOLE | - |
| dc.subject.keywordPlus | FURAN | - |
| dc.citation.endPage | 3728 | - |
| dc.citation.number | 9 | - |
| dc.citation.startPage | 3721 | - |
| dc.citation.title | Fibers and Polymers | - |
| dc.citation.volume | 26 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Materials Science; Polymer Science | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Textiles; Polymer Science | - |
| dc.type.docType | Article | - |