Detail View

Title
Directed evolution of LaccID for cell surface proximity labeling and electron microscopy
Issued Date
2025-12
Citation
Nature Chemical Biology, v.21, no.12, pp.1895 - 1905
Type
Article
Keywords
SINGLEOXYGENTOOLLACCASEEXPRESSION
ISSN
1552-4450
Abstract
Enzymes that oxidize aromatic substrates have been harnessed for cell-based technologies including proximity labeling and electron microscopy; however, they are associated with drawbacks such as the need for toxic H2O2. Here, we explore multicopper oxidases (laccases) as a new enzyme class for proximity labeling and electron microscopy in mammalian cells. LaccID was generated through 11 rounds of directed evolution from an ancestral fungal laccase and catalyzes one-electron oxidation of diverse aromatic substrates using O2 instead of toxic H2O2. Surprisingly, we found that LaccID is selectively active at the surface plasma membrane of both living and fixed cells. We use LaccID proximity labeling and mass spectrometry to map the changing surface proteome of T cells that engage with tumor cells through antigen-specific T cell receptors. In addition, we use LaccID as a genetically encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/58971
DOI
10.1038/s41589-025-01973-6
Publisher
Nature Publishing Group
Show Full Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

이송이
Lee, Song-Yi이송이

Department of New Biology

read more

Total Views & Downloads