Detail View

Hybrid Polyacrylamide-ZnO Electron Transport Layers; Enhancing Exciton Recombination and Charge Injection for High-Efficiency QLEDs
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Ahn, Jae-Hyeon -
dc.contributor.author Cho, Sinyoung -
dc.contributor.author Choi, Donghyun -
dc.contributor.author Chae, Weon-Sik -
dc.contributor.author Song, Myungkwan -
dc.contributor.author Ko, Keum-Jin -
dc.contributor.author Lee, Jong-Soo -
dc.date.accessioned 2025-09-04T18:10:11Z -
dc.date.available 2025-09-04T18:10:11Z -
dc.date.created 2025-08-22 -
dc.date.issued 2025-10 -
dc.identifier.issn 2195-1071 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59036 -
dc.description.abstract ZnO nanoparticles (ZnO NPs) are widely utilized as electron transport layers (ETLs) in quantum dot light-emitting diodes (QLEDs) due to their high electron mobility, wide bandgap, excellent transparency, and effective hole blocking properties. However, exciton quenching at the interface between quantum dots (QDs) and ZnO NPs and unfavorable band alignment hinder the performance of QLED devices. In this study, a straightforward and versatile approach is introduced to fabricate high-performance QLED by incorporating Polyacrylamide (polyNIPAM) with ZnO NPs. The resulting QD and hybrid-ZnO NPs films achieved a photoluminescence quantum yield (PLQY) of 57.8% and a recombination rate of 80.07%. Compared to conventional ZnO-based QLEDs, the hybrid approach led to a significant improvement in external quantum efficiency (22.34%), maximum brightness (97 593 cd m-2), and a narrow full-width at half maximum (FWHM) of 22.3 nm. The hybrid ZnO NPs exhibited favorable energy levels for electron injection, promoting exciton recombination while minimizing charge diffusion losses at the QD/ZnO NP interfaces. These findings highlight the potential of polyNIPAM-functionalized ZnO NPs for scalable, high-performance QLED fabrication. Future work will focus on optimizing hybrid material composition to further suppress electron leakage and enhance charge transport 1in large-area devices. -
dc.language English -
dc.publisher Wiley -
dc.title Hybrid Polyacrylamide-ZnO Electron Transport Layers; Enhancing Exciton Recombination and Charge Injection for High-Efficiency QLEDs -
dc.type Article -
dc.identifier.doi 10.1002/adom.202500669 -
dc.identifier.wosid 001546664400001 -
dc.identifier.scopusid 2-s2.0-105012980773 -
dc.identifier.bibliographicCitation Advanced Optical Materials, v.13, no.28 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor exciton diffusion length -
dc.subject.keywordAuthor exciton quenching -
dc.subject.keywordAuthor ZnOnanoparticles -
dc.subject.keywordAuthor QLED -
dc.subject.keywordAuthor depletion width -
dc.subject.keywordPlus LIGHT-EMITTING-DIODES -
dc.subject.keywordPlus QUANTUM -
dc.subject.keywordPlus ELECTROLUMINESCENCE -
dc.subject.keywordPlus DEVICES -
dc.subject.keywordPlus GREEN -
dc.subject.keywordPlus RED -
dc.subject.keywordPlus ZINC-OXIDE -
dc.citation.number 28 -
dc.citation.title Advanced Optical Materials -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Materials Science; Optics -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary; Optics -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이종수
Lee, Jong-Soo이종수

Department of Energy Science and Engineering

read more

Total Views & Downloads