Detail View

Topological Machine Learning Unveils Hidden Reaction Pathways in Nanocrystal Synthesis
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Byeoksong -
dc.contributor.author Choi, Mahnmin -
dc.contributor.author Shin, Jibin -
dc.contributor.author Ha, Hyunwook -
dc.contributor.author Shim, Doeun -
dc.contributor.author Jeong, Sohee -
dc.contributor.author Kang, Joongoo -
dc.date.accessioned 2026-01-13T21:40:16Z -
dc.date.available 2026-01-13T21:40:16Z -
dc.date.created 2025-12-11 -
dc.date.issued 2025-12 -
dc.identifier.issn 0002-7863 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59351 -
dc.description.abstract Uncovering reaction pathways from analytical data such as UV-vis spectra remains a central challenge in nanocrystal synthesis, where transient and ill-defined intermediates complicate mechanistic analysis. Conventional approaches, reliant on manual spectral feature extraction and expert interpretation, are prone to bias and often overlook critical events. Here we present a machine learning framework that integrates transformer-based data augmentation with topological manifold learning to objectively elucidate reaction pathways directly from raw, high-dimensional spectroscopic data. The key insight is that the topology of the data manifold reflects the structure of the underlying reaction pathway. Applied to ex-situ UV-vis data sets of indium arsenide nanocrystal synthesis, this approach reconstructs the complete reaction landscape, identifying previously unreported metastable intermediates and revealing how chemical additives modulate intermediate formation to steer pathway selection. Broadly adaptable to diverse analytical data, this topological learning framework provides a generalizable strategy for mechanistic discovery and predictive control in complex chemical systems. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Topological Machine Learning Unveils Hidden Reaction Pathways in Nanocrystal Synthesis -
dc.type Article -
dc.identifier.doi 10.1021/jacs.5c15371 -
dc.identifier.wosid 001627224800001 -
dc.identifier.scopusid 2-s2.0-105024736031 -
dc.identifier.bibliographicCitation Journal of the American Chemical Society, v.147, no.49, pp.45337 - 45346 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus QUANTUM -
dc.subject.keywordPlus EFFICIENT -
dc.citation.endPage 45346 -
dc.citation.number 49 -
dc.citation.startPage 45337 -
dc.citation.title Journal of the American Chemical Society -
dc.citation.volume 147 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

강준구
Kang, Joongoo강준구

Department of Physics and Chemistry

read more

Total Views & Downloads