Detail View

해부학적 제약과 교차 어텐션을 통한 CT 및 디지털 단층촬영술의 자가 지도 비강체 정합
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Lee, Gyeongmin -
dc.contributor.author 박무열 -
dc.contributor.author 서연우 -
dc.contributor.author 소정태 -
dc.contributor.author 정영준 -
dc.contributor.author Mikiko Ito -
dc.contributor.author 이병기 -
dc.contributor.author 박상현 -
dc.date.accessioned 2026-01-15T22:10:09Z -
dc.date.available 2026-01-15T22:10:09Z -
dc.date.created 2025-11-06 -
dc.date.issued 2025-11 -
dc.identifier.issn 1976-5622 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59370 -
dc.description.abstract In image-guided surgery, the registration of preoperative 3D computed tomography (CT) and intraoperative digital tomosynthesis (DTS) images is essential. However, it presents significant technical challenges due to the multi-modal nature of the two images, inherent DTS artifacts, and the lack of ground truth data. Therefore, this study proposes a self-supervised learning-based non-rigid registration framework. The proposed method precisely estimates local deformations through deep learning-based non-rigid registration, leveraging pre-registration on CT–DTS image pairs. To overcome the lack of ground truth data, a training data pipeline was established. This pipeline generates CT-synthesized DTS-ground truth deformation field data pairs by applying anatomically constrained virtual deformations to the CT images and re-projecting them. Additionally, we designed a specialized network architecture incorporating a multi-encoder and a cross-attention mechanism to effectively fuse the features of the multi-modal images. Experimental results using a public dataset show that the proposed method achieved a 3D target registration error of 12.99 mm. This study is expected to contribute to the future advancement of surgical navigation systems by offering a new direction for the CT–DTS registration problem. -
dc.language Korean -
dc.publisher 제어·로봇·시스템학회 -
dc.title 해부학적 제약과 교차 어텐션을 통한 CT 및 디지털 단층촬영술의 자가 지도 비강체 정합 -
dc.title.alternative Self-supervised Deformable Registration of CT and Digital Tomosynthesis via Anatomical Constraints and Cross-attention -
dc.type Article -
dc.identifier.doi 10.5302/J.ICROS.2025.25.0239 -
dc.identifier.scopusid 2-s2.0-105022906981 -
dc.identifier.bibliographicCitation 제어.로봇.시스템학회 논문지, v.31, no.11, pp.1240 - 1247 -
dc.identifier.kciid ART003261595 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor medical image registration -
dc.subject.keywordAuthor image-guided surgery -
dc.subject.keywordAuthor CT-DTS registration -
dc.subject.keywordAuthor self-supervised learning -
dc.subject.keywordAuthor non-rigid registration -
dc.subject.keywordAuthor deep learning -
dc.subject.keywordAuthor multi-modal images -
dc.subject.keywordAuthor cross-attention mechanism -
dc.citation.endPage 1247 -
dc.citation.number 11 -
dc.citation.startPage 1240 -
dc.citation.title 제어.로봇.시스템학회 논문지 -
dc.citation.volume 31 -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박상현
Park, Sang Hyun박상현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads