Detail View

Progress in synthesis of Ti3C2Tx MXene-based nanostructures for energy harvesting and storage: A review

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Naveen, Kumar -
dc.contributor.author Hoang, Quy-Van -
dc.contributor.author Belal, Mohamed Ahmed -
dc.contributor.author Kaja, Kushal Ruthvik -
dc.contributor.author Nguyen, Phihung -
dc.contributor.author Le-Van, Quynh -
dc.contributor.author Vo, Vien L. -
dc.contributor.author Linh, Vo Thi Thuy -
dc.contributor.author Nguyen, Phan Khanh Thinh -
dc.contributor.author Hoai Ta, Qui Thanh Hoai -
dc.date.accessioned 2026-01-21T22:10:15Z -
dc.date.available 2026-01-21T22:10:15Z -
dc.date.created 2025-12-04 -
dc.date.issued 2025-12 -
dc.identifier.issn 2468-2284 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59407 -
dc.description.abstract Ti3C2Tx MXene, a two-dimensional transition metal carbide, has emerged as a highly promising material for energy harvesting applications due to its exceptional electrical conductivity, large surface area, and tunable surface chemistry. This review presents a comprehensive overview of recent progress in synthesizing Ti3C2Tx MXene and its nanostructured composites, highlighting both conventional and fluoride-free etching methods. We explore the integration of MXene with other functional materials to enhance its performance in solar cells, triboelectric nanogenerators, supercapacitors, and printed batteries. Special attention is given to the role of surface terminations, interlayer interactions, and structural modifications in optimizing electrochemical and mechanical properties. Finally, we discuss current challenges-such as oxidation stability, scalable production, and surface functionalization- and propose future directions for advancing MXene-based technologies in sustainable energy systems. -
dc.language English -
dc.publisher Elsevier -
dc.title Progress in synthesis of Ti3C2Tx MXene-based nanostructures for energy harvesting and storage: A review -
dc.type Article -
dc.identifier.doi 10.1016/j.jsamd.2025.101034 -
dc.identifier.wosid 001617546500001 -
dc.identifier.scopusid 2-s2.0-105022745460 -
dc.identifier.bibliographicCitation Journal of Science: Advanced Materials and Devices, v.10, no.4 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Silicon solar cells and dye-sensitized solar cells -
dc.subject.keywordAuthor Synthesis -
dc.subject.keywordAuthor Supercapacitors and batteries -
dc.subject.keywordAuthor Ti3C2Tx MXene -
dc.subject.keywordAuthor Triboelectric nanogenerators -
dc.subject.keywordAuthor Perovskite solar cells -
dc.subject.keywordAuthor Properties -
dc.subject.keywordAuthor Printed systems -
dc.subject.keywordPlus SURFACE-STRUCTURE -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus MECHANISM -
dc.citation.number 4 -
dc.citation.title Journal of Science: Advanced Materials and Devices -
dc.citation.volume 10 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Review -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: