Detail View

Development of Polyacrylonitrile-Immobilized Cobalt-Based Prussian Blue Analogues for Selective Cesium Removal from Water
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Development of Polyacrylonitrile-Immobilized Cobalt-Based Prussian Blue Analogues for Selective Cesium Removal from Water
DGIST Authors
Bokyung KimSoonhyun Kim
Advisor
김순현
Issued Date
2026
Awarded Date
2026-02-01
Type
Thesis
Description
cesium adsorption, hexacyanocobaltate, PAN immobilization, column operation, reproducibility
Abstract

To stably remove radioactive cesium (Cs⁺) from multicomponent waters (e.g., seawater-like conditions), an adsorbent is required that combines high selectivity and sufficient capacity with reliable column operability, and reproducibility. This study adopted a stepwise strategy toward that goal. First, column process were established using Ammonium molybdophosphate-Polyacrlyonitirle (AMP–PAN). Next, a ZnFe-based Prussian Blue analogue (PBA) was immobilized in Polyacrylonitirle (PAN) and alginate matrices to compare adsorption capacity, adsorption rate, column suitability, and materials toxicity/manufacturability. Finally, hexacyano metal framework (hexacyanocobaltate, HCC) and its immobilized form were synthesized and evaluated as next- generation Cs⁺ adsorbents for seawater environments. Direct synthesis and testing of powder HCCs with different transition-metal compositions revealed critical limitations that have been under-addressed in prior literature. Powder showed poor reproducibility across repeated trials. To identify the origin of these inconsistencies, post-adsorption Cs⁺ and dissolved Co²⁺ were quantified by ICP–MS. Substantial cobalt leaching was detected over the entire concentration range, and its magnitude did not scale monotonically with concentration. These observations indicate that Cs⁺ ion exchange is accompanied by partial dissolution of the Co–CN–M lattice and/or detachment of lattice fragments, so that a portion of the measured 𝑞𝑒reflects non-adsorptive processes (dissolution/reprecipitation) rather than intrinsic ion exchange. Introducing PVP to improve crystallinity and dispersibility (2′ HCC) enhanced the initial low- concentration response but did not fully resolve the reproducibility issues, showing that the structural vulnerability of the powder state cannot be overcome by morphology control alone. By contrast, immobilizing HCC in a PAN matrix to form bead-type HCC–PAN produced markedly improved agreement among replicates, substantially and a stable, monotonic increase consistent with Langmuir-type monolayer. Under identical conditions, dissolved Co levels were significantly lower than those of the powders and exhibited weak concentration dependence. This stabilization is attributed to the polymer network, which mechanically suppresses release of unreacted precursors and detachment of lattice fragments, physically constraining the framework and preventing cumulative leaching even in the presence of local microcracks or partial dissolution. In summary, the powder form of HCC lacks the reproducibility and reliability required for use as a reference material in mechanistic analysis and performance benchmarking. In contrast, HCC–PAN simultaneously achieves low Co leaching, consistent isotherm shape, and excellent operational reproducibility, demonstrating strong promise as a practical Cs⁺ adsorbent for continuous, column-based treatment in seawater- like environments. Keywords: cesium adsorption, hexacyanocobaltate(HCC), PAN immobilization, column operation, reproducibility.|본 연구는 해수 유사 고염도·다성분 수계에서의 Cs⁺ 의 대용량 처리를 목표로, 다양한 흡착체와 고정화 전략을 유사한 실험 조건에서 정량 비교하고, 최종적으로 재현성·구조 안정성을 충족하는 새로운 흡착제를 개발하였다. 핵심 결과는 다음과 같이 요약된다. 첫째, 상용 기준으로 삼은 AMP–PAN은 공정 지표를 표준화하는 데 충분했으나, 재생 효율이 좋지 않았고, 흡착용량이 낮았다. 둘째, ZnFe(W)를 PAN 또는 알지네이트로 고정화하면 전처리 후 후처리의 문제를 확실히 개선시킬 수 있었고, 특히 알지네이트는 비독성 수계 제조의 장점을 확인했다. 셋째, 분말형 HCC는 문헌의 보고와 달리 반복 실험 간 변동성이 컸고, 같은 조성임에도 흡착의 재현성을 판단하기 어려웠다. Cs⁺와 Co3⁺의 동시 정량 결과 전 농도 범위에서 유의한 코발트 용출이 관찰되었고, 이는 부분 용해·탈락과 같은 화학적 변화가 흡착 과정에 있음을 시사한다. 마지막으로, HCC를 PAN으로 고정화한 HCC–PAN은 Co 용출을 유의미하게 낮추었고, 반복 간 오차 범위를 유의하게 축소하였다. 즉, 동일 공정 조건에서 HCC–PAN가 측정 신뢰도와 운전 재현성을 동시에 확보하였다. 이 결과는 두 가지 중요한 함의를 갖는다. 첫째, 분말형 HCC의 등온선은 진성 이온교환만을 반영하지 않는다는 점을 실험적으로 제시함으로써, HCC 분말 상태에서의 성능 비교가 단순히 가시적인 흡착 용량으로 하기는 어렵다. 둘째, 파우더의 고정화(immobilization) 가 재현성과 내구성, 그리고 실제 컬럼 충진의 적합성을 좌우하는 핵심임을 확인하였다. HCC–PAN은 이러한 원리를 구현한 결과물로, 추후 해수 유사 조건에서의 연속식 컬럼 실험의 충진재로 충분히 적용 가능하다고 판단하였다. 그러나, 재사용 가능성, 실제 수계(해수 모사 공존 이온)에서의 컬럼 실험 등이 후속 실험으로 남아 있다. 한계와 전망도 분명하다. HCC–PAN은 매우 저농도 영역에서 비드 내부 확산에 따른 초기 용량 저하가 관찰될 수 있으며, 이는 비드 직경·기공도·매트릭스 함량과 접촉시간·유량의 최적화를 통해 상쇄되어야 한다. 그럼에도 본 연구에서 확인한Cs⁺/Co²⁺ 동시 모니터링을 통한 흡착제의 불안정성의 확인과, PAN 고정화를 통한 구조 안정화를 통해 HCC가 신뢰할 수 있는 PBA계 차세대 Cs+ 흡착제임을 결론지었다.
핵심어: 세슘, 고정화, 프러시안 블루 아날로그, 헥사시아노코발테이트, 컬럼 실험

더보기
Table Of Contents
1. Research Background 1
1.1 Introduction 1
1.2 Method of Cs removal 3
1.3 Materials of Cs removal 7
1.3.1 Organic and Biological Adsorbents 8
1.3.2 Inorganic Adsorbents 9
1.4 Research Topic 12
2. AMP-PAN 14
2.1 Experimental section 14
2.1.1 Preparation of AMP-PAN 14
2.1.2 Characterization of AMP-PAN 15
2.1.3 Batch Cs+ adsorption experiments 15
2.1.4 Column Experiment 17
2.2 Result and discussion 18
2.2.1 Preparation and Optimization of AMP-PAN bead 18
2.2.2 Characterization of AMP-PAN 21
2.2.3 Cs+ adsorption on AMP-PAN 25
2.2.4 Cs+ adsorption and desorption performance 31
2.2.5 Column Experiment 34
2.3 summary 39
3. ZnFe-PAN 42
3.1 Experimental section 42
3.1.1 Preparation of ZnFe-PAN 42
3.1.2 Characterization of ZnFe-PAN 43
3.1.3 Cs+ adsorption experiments 43
3.2 Result and discussion 44
3.2.1 Optimization of ZnFe(W)-PH synthesis 44
3.2.2 Characterization of ZnFe-PAN 47
3.2.3 Cs+ adsorption on ZnFe-PAN 50
3.2.4 Column Experiment 54
3.3 summary 64
4. ZnFe-AF 65
4.1 Experimental section 65
4.1.1 Preparation of ZnFe-AF 65
4.2 Result and discussion 66
4.2.1 Optimization of ZnFe-AF 66
4.2.2 Cs+ adsorption on ZnFe-AF 69
4.3 summary 73
5. HCC 75
5.1 Experimental section 75
5.1.1 Preparation of Hexacyanocobaltate 75
5.1.2 Characterization of Hexacyanocobaltate 77
5.2 Result and discussion 77
5.2.1 Chracterization of Hexacyanocobaltate 77
5.2.2 Cs+ adsorption on HCC 81
5.3 summary 85
6. Conclusion 87
7. References 89
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/59720
http://dgist.dcollection.net/common/orgView/200000942230
DOI
10.22677/THESIS.200000942230
Degree
Master
Department
Interdisciplinary Engineering Major
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads