Detail View
Investigation of oxidative stress as a driver of early neurogenic lineage disruption in APPswe hiPSC-derived neural progenitor cells
Citations
WEB OF SCIENCE
Citations
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 이성배 | - |
| dc.contributor.author | Joonho Cho | - |
| dc.date.accessioned | 2026-01-23T10:58:31Z | - |
| dc.date.available | 2026-01-24T06:00:43Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59757 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000889524 | - |
| dc.description | Alzheimer's disease, Cerebral Organoid | - |
| dc.description.abstract | 인간유도만능줄기세포에서 유래한 대뇌 오가노이드 기술은 인간과 유사한 환경으로 체외에서 알츠하이머병의 초기 세포변화에 대해 연구하는데 매우 유용한 모델이다. 본 연구에서는 APP Swedish (APPswe) 유전자를 보유한 대뇌 오가노이드를 활용하여 알츠하이머 질환 진행 과정 중 나타나는 조기 신경발생 이상 및 관련 분자 기전을 규명하고자 하였다. 한 달간 배양한 APPswe 대뇌 오가노이드는 신경 활동 증가 및 조기 신경분화 현상을 나타냈으며, 면역조직화학, 웨스턴 블롯, 유세포 분석을 통해 신경전구세포 표지의 감소와 미성숙 신경세포 표지의 증가가 관찰되었다. 이는 성숙한 신경세포로의 완전한 분화 없이 신경전구세포에서 미성숙 신경세포로의 비정상적인 분화를 나타내었다. 이차원 배양 환경에서는 APPswe 신경전구세포의 미토콘드리아 유래 활성산소종의 증가가 조기 신경분화를 유도하는 주요 원인임을 확인하였으며, 항산화제인 EUK8 처리는 이를 회복시켰다. 이 결과는 다른 알츠하이머 유전자인 APOE4 표현형을 가진 신경전구세포에서도 관찰되었으나 알츠하이머 관련 유전적 배경이 없는 경우에는 활성산소종의 증가만으로 신경세포로의 조기분화를 관찰하지는 못하였다. 전사체 분석 결과 APPswe 신경전구세포는 신경세포 발달, 시냅스 형성, 소포 수송 관련 유전자의 발현이 증가한 반면, 세포증식 관련 유전자들은 감소하였다. 이와 함께 스트레스 관련 유전자인 TFE3의 발현이 증가하였으며, 기저상태의 DNA손상 수준과 외부 스트레스에 대한 민감성도 증가하였다. 종합적으로, APPswe 돌연변이는 미토콘드리아 산화 스트레스를 통해 조기 신경전구세포의 분화를 교란시키며, 이는 AD 의 초기 병리 기전을 반영하는 중요한 현상임을 시사한다.본 연구는 알츠하이머병 조기 병리 기전에 대한 이해를 확장하였으며, 미토콘드리아 활성산소종이 조기 신경분화의 주요 조절자로 작용함을 제시하였다. 핵심어: 알츠하이머 병, 신경분화, 활성산소종, 인간유도만능줄기세포|Cerebral organoids derived from human induced pluripotent stem cells (hiPSCs) provide a valuable platform to investigate human specific biological processes and early cellular events in Alzheimer’s disease (AD) under in vitro conditions. In this thesis, I utilized isogenic hiPSC derived cerebral organoids carrying the APP Swedish mutation (APPswe) to explore early neurogenic alterations and the underlying molecular mechanisms associated with AD progression. APPswe cerebral organoids cultured for one month exhibited enhanced neuronal activity and premature neuronal differentiation. Notably, this premature differentiation was observed not only in neurons but also at the neural progenitor cells (NPCs) stage. Immunohistochemistry, western blot, and flow cytometry analyses consistently indicated a shift from NPC identity toward an immature neuronal fate without progression into mature neuronal lineages. In a two-dimensional (2D) culture system, APPswe NPCs exhibited elevated levels of reactive oxygen species (ROS) and identified as a key contributor to premature neuronal differentiation. Treatment with EUK8, a synthetic antioxidant, rescued the early neurogenic phenotype in APPswe NPCs. Similar phenotype was also observed in NPCs carrying APOE4 allele. However, elevated ROS alone was insufficient to induce this phenotype in the absence of AD associated genetic background. Transcriptome analysis further demonstrated that APPswe NPCs exhibited increased neuronal program, synaptogenesis, and vesicle transport related genes and decreased cell proliferation related genes. These changes were accompanied by elevated expression of stress-associated transcription factors such as TFE3 and increased basal DNA damage and vulnerability to stress. Taken together, these findings demonstrate that the APPswe mutation disrupts early neural progenitor dynamics through a mitochondrial oxidative stress. This work expands our understanding of early AD pathology by identifying mitochondrial ROS as a key regulator of premature neurogenesis. Keywords: Alzheimer’s disease (AD), Neuronal differentiation, Reactive oxygen species (ROS), human induced pluripotent stem cells (hiPSCs) |
- |
| dc.description.tableofcontents | List of Contents Abstract i List of contents ii List of figures v Introduction 1 General introduction 1 Alzheimer’s disease (AD) as a growing global health concern 1 Neuropathological hallmarks and the amyloid cascade hypothesis 2 Genetic subtype of AD: familial and sporadic forms 3 Anti-amyloid therapies in early symptomatic AD 4 Neurogenesis in embryonic and adult brain 6 Oxidative stress and its impact on early neuronal differentiation 8 Limitations of animal models and the emergence of human induced Pluripotent Stem Cells (hiPSCs) 8 Cerebral organoid and AD 9 Purpose of this thesis 10 Materials and Methods 12 hiPSCs Culture 12 NPC Differentiation from hiPSCs 12 Neuron Differentiation from NPCs 12 Cerebral Organoid Generation from hiPSCs 13 Multi-electrode Array (MEA) Recording and Analysis 13 Immunohistochemistry 14 Immunoblotting 14 Flow cytometry analysis from Cerebral organoids 15 Immunocytochemistry 15 Seahorse extracellular analysis 16 EdU Staining 16 MitoSOX staining and Fluorescence-activated Cell Sorting (FACS) 17 Transcriptomic analysis 17 Transcription factor binding motif enrichment 18 Quantification and statistical analysis 19 Results 20 Generation and validation of APPswe isogenic iPSCs to investigate early neurogenic alterations in AD 20 Enhanced neuronal activity and early differentiation in APPswe cerebral organoids 23 Increased mitochondrial ROS and its impact on early differentiation in AD NPCs 28 Increased mitochondrial ROS promotes premature neuronal differentiation in APPswe and APOE4 NPcs 30 Elevated ROS alone is insufficient to drive premature neuronal differentiation 37 Transcriptome analysis of APPswe NPCs reveals changes in gene expression toward neuronal differentiation 40 APPswe NPCs show limited transition to mature neurons 49 APPswe NPCs show vulnerability to oxidative stress 56 Graphical Summary 59 Discussion 60 Premature neuronal differentiation observed across AD genetic backgrounds 60 Elevated ROS as an early driver of premature neuronal differentiation in AD NPCs 60 Mitochondrial dysfunction and autophagy disruption as upstream sources of ROS in AD 61 Interplay between ROS, mTORC1, and TFE3 may contribute to altered neurogenesis in APPswe NPCs 62 Transcriptomic signatures of immature neurons and glial potential in AD NPCs 63 From early neurogenesis to hyperexcitation: a progressive cascade in AD 64 Early brain atrophy in fAD may reflect developmental and neurogenic disruption 65 References 67 Abstract in Korean 75 |
- |
| dc.format.extent | 75 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | Investigation of oxidative stress as a driver of early neurogenic lineage disruption in APPswe hiPSC-derived neural progenitor cells | - |
| dc.title.alternative | APPswe 변이를 지닌 인간유도만능줄기세포 유래 신경전구세포에서 산화적 스트레스에 의한 조기 신경발생 기전에 대한 연구 | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000889524 | - |
| dc.description.degree | Doctor | - |
| dc.contributor.department | Department of Brain Sciences | - |
| dc.contributor.coadvisor | Jaewon Ko | - |
| dc.date.awarded | 2025-08-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.BD 조76 202508 | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.alternativeDepartment | 뇌과학과 | - |
| dc.subject.keyword | Alzheimer's disease, Cerebral Organoid | - |
| dc.contributor.affiliatedAuthor | Joonho Cho | - |
| dc.contributor.affiliatedAuthor | Sung Bae Lee | - |
| dc.contributor.affiliatedAuthor | Jaewon Ko | - |
| dc.contributor.alternativeName | 조준호 | - |
| dc.contributor.alternativeName | Sung Bae Lee | - |
| dc.contributor.alternativeName | 고재원 | - |
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
