WEB OF SCIENCE
SCOPUS
G 단백질 연결 수용체(GPCRs)는 진핵생물에서 가장 큰 막단백질 그룹으로, G 단백질 및 β arrestin 을 매개로 다양한 세포외 신호를 세포 내 반응으로 전달하는 역할을 수행한다. G 단백질의 활성화는 Gα 소단위체로부터의 GDP 방출로 시작된다. 이는 Ras-유사 도메인과 나선 도메인 간의 분리를 포함하는 구조적 변화가 수반된다. GDP 결합 부위 주변의 구조적 특징은 광범위하게 연구되었으나, 도메인 사이의 경첩 부위(Linker 1)의 알로스테릭 역할은 상대적으로 잘 밝혀지지 않았다. 본 연구에서는 Gαi1 및 Gαs 동형체를 대상으로 래칫 분자동역학(ratcheted molecular dynamics)과 엄브렐러 샘플링(umbrella sampling) 시뮬레이션을 활용하여 경첩 길이가 GDP 방출 속도에 미치는 영향을 분석하였다. 그 결과, 긴 경첩을 가진 경우 GDP 방출이 촉진되며 이는 평균력장(PMF) 기반 자유에너지 프로파일 감소와 일치하는 반면, 짧은 경첩은 높은 에너지 장벽과 느린 뉴클레오타이드 교환과 관련됨을 확인하였다. 또한 Gαi3 에 대해 원자 수준의 분자동역학 시뮬레이션과 MM-PBSA 자유에너지 계산을 통해 GDP 결합 포켓 주변의 보존된 잔기들의 기여를 평가하였다. F336A, N269A, D272A, Y320A/H322A, S44A/K46A/S47A 돌연변이들을 도입하여 GDP/GTP 전환율, 구조적 동역학 및 GDP 결합 친화도에 대한 영향을 분석하였다. 그 결과, 인산기 결합 부위에서의 동적인 구조 변화가 GDP 방출의 핵심 결정 요소임을 확인하였으며, 이는 G 단백질 활성화 메커니즘에서의 중요성을 부각시킨다. GPCR–arrestin 상호작용의 분자적 기전을 규명하기 위해, 바소프레신 수용체의 인산화된 C말단 펩타이드(V2Rpp)와 결합한 β-arrestin1 에 대한 계산 기반 분석이 수행되었다. K294 잔기는 V2Rpp 결합에 필수적인 요소로 확인되었으며, K292 및 H295 는 극성 중심의 안정화 및 핑거 루프 형성을 도와 β-arrestin 의 활성화에 중요한 구조적 역할을 수행함을 보여주었다. 이와 같은 결과는 G 단백질 활성화 및 β-arrestin 매개 신호전달 메커니즘에 대한 원자 수준의 통찰을 제공하며, 경첩 부위가 뉴클레오타이드 교환과 동형체 특이적 신호전달을 조절하는 보존된 요소임을 강조한다. 모든 계산 결과는 수소-중수소 교환 질량분석법(HDXMS), BODIPY-GTPγS 형광 기반 활성화 분석, 결합 친화도 측정 등을 통해 실험적으로 검증되었다.|G protein-coupled receptors (GPCRs) represent the largest superfamily of transmembrane proteins in eukaryotes, responsible for transducing a wide range of extracellular signals into intracellular responses through G proteins and β-arrestins. Activation of G proteins is initiated by the release of GDP from the Gα subunit, a process that involves conformational changes, particularly the separation of the Ras-like and helical domains. While structural features proximal to the GDP-binding site have been extensively studied, the allosteric role of the interdomain hinge region (Linker 1) remains less characterized. To address this, ratcheted molecular dynamics and umbrella sampling simulations were used to investigate the influence of hinge length on GDP release kinetics in Gαi1 and Gαs isoforms. The results indicate that longer hinge regions facilitate more rapid GDP release, corresponding to reduced binding free energy profiles derived from potential of mean force (PMF) calculations, whereas shorter hinges correlate with higher energetic barriers and slower nucleotide exchange. Additionally, the contribution of conserved residues surrounding the GDP-binding pocket was evaluated through all-atom molecular dynamics simulations and MM-PBSA free energy calculations in Gαi3. Point mutations (F336A, N269A, D272A, Y320A/H322A, S44A/K46A/S47A) were analyzed for their impact on GDP/GTP turnover, conformational dynamics, and GDP-binding affinity. The results highlight that dynamic alterations in the phosphate- binding region are critical determinants of GDP release, underscoring its essential role in G protein activation mechanisms. To investigate the molecular basis of GPCR–arrestin interactions, computational analyses were conducted on β-arrestin-1 in complex with the phosphorylated C-terminal tail peptide of the vasopressin receptor (V2Rpp). Residue K294 was identified as a critical determinant for V2Rpp engagement, while K292 and H295 were found to stabilize the polar core and support finger loop formation-structural features essential for arrestin activation. Together, these findings offer atomic-level insights into the mechanisms of G-protein activation and arrestin-mediated signaling, highlighting the hinge region as a conserved regulator of nucleotide exchange and isoform-specific signaling dynamics. All simulation results were supported by hydrogen-deuterium exchange mass spectrometry (HDX-MS), BODIPY-GTPγS fluorescence assays, and binding affinity measurements. Keywords: G protein-coupled receptor, G protein, β-Arrestin, Phosphorylation, GDP, Conformational dynamics
더보기