Detail View
Magnetoelectric and iron oxide-based micro/nanorobots for magnetic neuronal cell manipulation and wireless neuronal stimulation in brain diseases
Citations
WEB OF SCIENCE
Citations
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | 최홍수 | - |
| dc.contributor.author | Dong-in Kim | - |
| dc.date.accessioned | 2026-01-23T10:58:51Z | - |
| dc.date.available | 2026-01-23T10:58:51Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://scholar.dgist.ac.kr/handle/20.500.11750/59764 | - |
| dc.identifier.uri | http://dgist.dcollection.net/common/orgView/200000891333 | - |
| dc.description | Magnetic actuation, Cell delivery, Neuronal differentiation, Neuroregeneration | - |
| dc.description.abstract | Neurodegenerative brain diseases and brain injuries, which result from the loss or degeneration of neurons, currently have no definitive treatment due to the limited regenerative capacity of neurons. Neural stem cells are considered a promising treatment, as they can form new neural networks when injected into damaged areas. Ongoing studies aim to improve targeted delivery by utilizing magnetic microrobots and magnetic fields to enhance the efficiency of cell transplantation. In addition, to enhance the therapeutic effect, magnetic microrobots with the special ability to deliver primary neurons or induce differentiation into neurons through electrical stimulation after delivering cells have been developed to induce neural stem cells delivered by magnetic microrobots to generate neurons in the lesion. However, microrobots with the ability to deliver cells and induce neuron formation have not yet been optimized for delivery into brain tissue. Single cell-based microrobots can cross the Blood-brain barrier (BBB) or reach brain tissue via the nasal route due to the special capabilities of the cells or their sufficiently small size. In this thesis, single cell-based cell delivery and neuron generation microrobots are proposed. Neuron-based microrobots (neuro-bots), which consist of single cells, are capable of generating neurons by delivering primary hippocampal neurons. Another neuron-generating microrobot, the magnetoelectric cell-based microrobot (ME cell-bot), is a single cell-based microrobot that can deliver cells and then electrically stimulate them through the magnetoelectric effect to induce neuronal differentiation.|본 논문은 퇴행성 신경질환 및 뇌손상을 치료하기 위해 자기장을 이용하여 세포를 전달하고 신경세포를 생성하는 자기장 구동 마이크로로봇을 제안합니다. 신경세포는 완전히 분화된 세포여서 스스로 재생이 어렵기 때문에 퇴행성 뇌질환 및 뇌손상은 난치성 질환으로써 확실한 치료법이 존재하지 않습니다. 약물 치료제, 뇌심부 자극술 등 신경퇴행성 질환에 대한 증상완화에 대한 치료법이 있으나 일시적인 개선효과만이 있습니다. 때문에 새로운 세포 이식을 통해 새로운 신경망을 재건하는 신경줄기세포이식 치료법은 퇴행성 신경질환 및 뇌손상을 치료하기 위한 잠재력 있는 방법으로 연구되고 있습니다. 더불어 신경줄기세포를 정확한 지점에 전달하여 세포전달율을 높이기 위해 개발되고 있는 마이크로/나노로봇 기술은 세포를 담지하고 자기장을 이용하여 세포를 정밀하게 전달할 수 있는 치료법으로 바이오 메디컬 분야에서 주목받고 있습니다. 추가적으로 마이크로/나노로봇을 통해 전달된 세포가 신경세포를 생성할 수 있도록 일차 뉴런세포를 전달하거나 세포를 전달한 후 신경분화를 유도할 수 있는 능력을 마이크로/나노로봇에 탑재하는 등 마이크로/나노로봇을 이용한 세포전달 치료법은 개선된 기술들을 통해 발전하였습니다. 하지만 세포전달 및 신경생성 마이크로로봇의 경우 뇌 조직에 접근할 수 있는 설계가 이루어지지 않고 있습니다. 현재까지의 세포전달 및 신경생성 마이크로/나노로봇은 그 개념만을 제시했을 뿐 혈관-뇌 장벽을 통과하거나 비강경로를 통해 뇌 조직에 도달할 수 있는 디자인을 제시하지 못하였습니다. 본 연구에서는 뇌 조직으로의 접근 가능성을 가지고 있는 단일 세포 기반 세포전달 및 신경생성 마이크로로봇을 제안합니다. 뉴런기반 마이크로로봇 (뉴로봇)은 단일 해마 일차 뉴런세포로 이루어진 마이크로로봇으로 자기장을 이용하여 해마 일차 뉴런세포를 직접 전달하는 것이 가능합니다. 또다른 모델인 단일 세포 기반 자기-전기 세포로봇 (자기-전기 세포봇)은 신경유사세포를 자기장을 이용하여 정밀하게 전달할 수 있고 교류-직류 자기장을 이용하여 전달된 세포봇 내 자기-전기 자극을 발생시켜 신경분화를 유도하는 것이 가능합니다. | - |
| dc.description.tableofcontents | List of Contents Abstract i List of contents ii List of figures v Ⅰ. Introduction 1.1 Micro/nano technology in biomedical field 1 1.2 Micro/nano therapeutics for cargo delivery 3 1.2.1 Passive targeting of micro/nano therapeutics 3 1.2.2 Active targeting of micro/nano therapeutics 5 1.3 Magnetic micro/nanorobot for therapeutics delivery 6 1.3.1 Magnetic micro/nanorobot 6 1.3.2 Magnetic actuation of micro/nanorobot 8 1.3.3 Magnetic micro/nanorobot design 10 1.3.4 Magnetic actuation system for precision control of magnetic micro/nanorobot14 ⅠI. Background 2.1 Stem cell deliver in brain disease 17 2.1.1 Neurodegenerative brain disease 17 2.1.2 Brain injury 17 2.1.3 Neural stem cell therapy 18 2.2 Stem cell delivery using magnetic microrobot 20 2.2.1 Process technique-based fabricated cell delivery microrobot 20 2.2.2 Biodegradable hydrogel/cell spheroid-based cell delivery microrobot 22 2.2.3 The need for cell differentiation after delivery 24 2.3 Magnetic microrobot delivery method considering neuron network generation 25 2.3.1 Primary neuron delivery microrobot 25 2.3.2 Cell delivery and stimulation microrobot 26 2.3.3 Design of microrobots for intra-brain cell delivery 28 2.4 Microrobots considering cell delivery in the brain 29 2.4.1 Obstacles to cell delivery in the brain 29 2.4.2 Design of microrobots for cargo delivery beyond the blood vessel wall 30 2.4.3 Design requirements for intra-brain neuronal cell delivery microrobots 33 2.5 Contribution of thesis 34 IIⅠ. Neuron-based microrobot for neuroregeneration 3.1 Introduction 37 3.2 Fabrication of Neuron-based microrobot 40 3.2.1 Poly-l-lysine coated magnetic nanoclusters (PLL-MNCs) 40 3.2.2 Primary hippocampal neuron culture 43 3.2.3 Particles bonding mechanism 44 3.2.4 Neuro-bot fabrication 46 3.3 Characterization of Neuro-bot 47 3.3.1 Structural characteristics of neuro-bots 47 3.3.2 Functional characteristics of neuro-bot 52 3.3.3 Structural and functional analysis of sub-cultured neuro-bots 55 3.4 Magnetic actuation of neuro-bot 61 3.4.1 Pulling motion of neuro-bot in in vitro 61 3.4.2 Rolling motion of neuro-bot in in vitro 63 3.4.3 Rolling motion in bio-environment and ex vivo 66 3.4.4 Viability during rotating magnetic field 68 3.5 In vivo transplantation and magnetic actuation of the neuro-bot in the brain 70 3.5.1 In vivo transplantation of neuro-bot infected with adeno-associated virus carrying the enhanced green fluorescent protein (EGFP) gene 70 3.5.2 Magnetic actuation of neuro-bot in the in vivo mouse brain 76 3.6 Conclusion 79 ⅠV. Magnetoelectric cell-based microrobot for cell delivery and neuronal differentiation 4.1 Introduction 82 4.2 BaTiO3-CoFe2O4 magnetoelectric nanoparticles 86 4.2.1 BaTiO3-CoFe2O4 magnetoelectric nanoparticles for ME stimulation 86 4.2.2 Fabrication of BaTiO3-CoFe2O4 magnetoelectric nanoparticles 89 4.2.3 Characterization of BaTiO3-CoFe2O4 magnetoelectric nanoparticles 91 4.3 Magnetoelectric cell-based microrobot (ME cell-bot) 94 4.3.1 Fabrication of magnetoelectric cell-bot 94 4.3.2 Characterization of magnetoelectric cell-bot 97 4.4 Magnetic actuation of magnetoelectric cell-bot 102 4.4.1 Magnetic actuation of magnetoelectric cell-bot by pulling motion 102 4.4.2 Magnetic actuation of magnetoelectric cell-bot by rolling motion 104 4.4.3 Magnetic actuation of magnetoelectric cell-bot by rotating motion 107 4.4.4 Cell viability of ME cell-bot during magnetic actuation 109 4.4.5 Magnetic actuation of ME cell-bot on bio-environment 111 4.5 Neuronal differentiation by magnetoelectric stimulation 112 4.5.1 Magnetoelectric stimulation of magnetoelectric nanoparticles 112 4.6 Neuronal differentiation by magnetoelectric stimulation 114 4.6.1 Neuronal differentiation of ME cell-bot by ME stimulation 114 4.6 Conclusion 119 V. Conclusion and future work 5.1 Conclusion 121 5.2 Future work 123 References 129 Appendix A1. Primary hippocampal neuron isolation 151 A2. H-S-H electromagnetic system 153 요약문 156 |
- |
| dc.format.extent | 156 | - |
| dc.language | eng | - |
| dc.publisher | DGIST | - |
| dc.title | Magnetoelectric and iron oxide-based micro/nanorobots for magnetic neuronal cell manipulation and wireless neuronal stimulation in brain diseases | - |
| dc.title.alternative | 자기-전기 혹은 산화철 기반 마이크로/나노로봇을 이용한 뇌 질환 치료를 위한 신경세포 구동 및 신경 자극 | - |
| dc.type | Thesis | - |
| dc.identifier.doi | 10.22677/THESIS.200000891333 | - |
| dc.description.degree | Doctor | - |
| dc.contributor.department | Department of Robotics and Mechatronics Engineering | - |
| dc.contributor.coadvisor | Seong-Woon Yu | - |
| dc.date.awarded | 2025-08-01 | - |
| dc.publisher.location | Daegu | - |
| dc.description.database | dCollection | - |
| dc.citation | XT.RD 김25 202508 | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.alternativeDepartment | 로봇및기계전자공학과 | - |
| dc.subject.keyword | Magnetic actuation, Cell delivery, Neuronal differentiation, Neuroregeneration | - |
| dc.contributor.affiliatedAuthor | Dong-in Kim | - |
| dc.contributor.affiliatedAuthor | Hongsoo Choi | - |
| dc.contributor.affiliatedAuthor | Seong-Woon Yu | - |
| dc.contributor.alternativeName | 김동인 | - |
| dc.contributor.alternativeName | Hongsoo Choi | - |
| dc.contributor.alternativeName | 유성운 | - |
| dc.rights.embargoReleaseDate | 2030-08-31 | - |
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
