Detail View
Development of a Compliance Compensator Capable of Measuring Six-axis Force/torque and Displacement for Robotic Assembly
WEB OF SCIENCE
SCOPUS
- Title
- Development of a Compliance Compensator Capable of Measuring Six-axis Force/torque and Displacement for Robotic Assembly
- Alternative Title
- 로봇 조립 작업을 위한 6축 힘/토크 및 변위 측정이 가능한 컴플라이언스 보상기 개발
- DGIST Authors
- Sunghyun Choi ; Dongwon Yun ; Minho Hwang
- Advisor
- 윤동원
- Co-Advisor(s)
- Minho Hwang
- Issued Date
- 2025
- Awarded Date
- 2025-08-01
- Type
- Thesis
- Description
- Passive compliance device, Force/torque sensor, Displacement sensor, Creep compensation, Robotic assembly
- Abstract
-
Assembly automation constitutes a significant portion of modern manufacturing processes, yet it remains technically challenging due to tiny positional errors between parts, diverse geometries, and unavoidable contact. Passive compliance devices have been widely used to compensate for alignment errors and absorb reaction forces during insertion. However, their mechanical operating range is fixed, and the lack of sensing capability limits their applicability. On the other hand, six-axis force/torque sensors are useful for estimating the assembly state by measuring reaction forces during the process, but they lack mechanical compliance, resulting in slower operation and vulnerability to impacts. In this thesis, we propose a compliance compensator capable of measuring six-axis force/torque and displacement that integrates the strengths of both approaches. The proposed compliance compensator uses polymer-based flexible materials to provide mechanical compliance while simultaneously offering force/torque and displacement information essential for precision assembly. Additionally, to compensate for the creep phenomenon caused by the viscoelastic properties of polymer materials, we introduce a viscoelastic model-based creep compensation algorithm, which significantly improves the sensing accuracy, response time, and hysteresis performance. The proposed compliance compensator was validated through experiments using a commercial force/torque sensor, a manipulator, and a precision linear stage. It was successfully applied to a precision robotic assembly process, achieving the insertion of components with a clearance of 40 μm.|조립 자동화는 제조공정에서 많은 부분을 차지하지만, 부품 간의 미세한 위치 오차, 다양한 형상, 불가피한 접촉 등으로 인해 여전히 기술적으로 어려운 과제이다. 수동 순응 장치는 삽입 중 정렬 오차를 보정하고 조립 반력을 흡수하는 용도로 널리 사용되어 왔다. 그러나 기계적 동작 범위가 고정되어 있으며 센싱 기능이 없어 적용 범위가 제한된다. 반면 6축 힘/토크 센서는 조립 과정에서 발생하는 반력을 측정할 수 있어 조립 상태 추정이 가능하지만 기계적 순응성이 부족하여 작업 속도가 느리고 충격에 취약하다는 단점이 있다. 본 연구에서는 이러한 두 기술의 장점을 통합한 6축 힘/토크 및 변위 측정이 가능한 컴플라이언스 보상기를 제안한다. 제안하는 컴플라이언스 보상기는 고분자 기반의 유연 재료를 활용하여 기계적 순응성을 제공하는 동시에, 조립 공정 중에 발생하는 힘/토크 및 변위 정보를 제공한다. 또한 고분자 재료의 점탄성 특성에 따른 크리프 현상을 보정하기 위해 점탄성 모델 기반의 크립 보상 알고리즘을 도입하였으며 이를 통해 센싱 정확도, 응답 속도, 이력 오차를 크게 향상시켰다. 제안하는 보상기는 상용 힘/토크 센서, 매니퓰레이터, 고정밀 리니어 스테이지를 활용한 실험을 통해 성능이 검증되었으며, 정밀 로봇 조립 공정에 적용되어 40 μm의 유격을 갖는 조립품 삽입을 성공적으로 구현하였다.
더보기
- Table Of Contents
-
List of Contents
Abstract i
List of Contents ii
List of Figures vi
List of Tables ix
I. Introduction 1
Ⅱ. Prototype of compliance compensator 6
2.1 Design of compliance compensator based on 6-DOF parallel mechanism 6
2.2 Kinematic analysis for displacement measurement 9
2.2.1 Inverse Kinematics 9
2.2.2 Forward Kinematics 12
2.3 Experiments and results 12
2.3.1 Experiments on displacement sensing 12
2.3.2 Feasibility test in robotic assembly 14
2.4 Discussion on compliance compensator based on parallel mechanism 18
2.5 Chapter 2: Conclusion 19
Ⅲ. Compliance compensator based on flexure link 20
3.1 Design of compliance compensator based on flexure link 20
3.2 Stiffness analysis 24
3.2.1 Element level 24
3.2.2 Mechanism level 28
3.2.3 Finite Element Analysis (FEA) 31
3.3 Sensing principle 32
3.4 Experiments and evaluations 35
3.4.1 Static calibration for force/torque measurement 35
3.4.2 Static response in force/torque measurement 36
3.4.3 Time response in force/torque measurement 39
3.4.4 Performance metrics 41
3.4.5 Evaluations for displacement sensing 43
3.5 Application for robotic assembly 45
3.5.1 Kinematic analysis 45
3.5.2 Experiments and evaluations 47
3.5.3 Advantages of proposed method 50
3.6 Chapter 3: Conclusion 50
Ⅳ. Performance enhancement 52
4.1 Improved design of compliance compensator 52
4.2 Signal processing 56
4.3 Stiffness analysis 59
4.3.1 Element level 60
4.3.2 Mechanism level 63
4.3.3 Remote Center Compliance (RCC) 66
4.4 Creep compensation 69
4.4.1 Selection of viscoelastic model 70
4.4.2 Modeling of viscoelastic behavior 71
4.4.2.1 Creep compliance 71
4.4.2.2 Relaxation modulus 72
4.4.3 Compensation law 73
4.4.3.1 Boltzmann’s superposition principle 73
4.4.3.2 Real-time compensation 74
4.5 Experiments for creep compensation 75
4.6 Performance test 77
4.6.1 Static response of force/torque sensing 77
4.6.2 Time response of force/torque sensing 79
4.6.3 Evaluations for other performance indexes 82
4.6.4 Evaluations for displacement sensing 84
4.6.5 Thermal effect 86
4.7 Chapter 4: Conclusion 87
V. Robotic assembly using compliance compensator 89
5.1 Related works 89
5.1.1 Robotic peg-in-hole assembly 89
5.1.2 Attractive Region In Environment (ARIE) 91
5.1.3 Geometry of three-point contact 93
5.2 Environment setup 95
5.2.1 System integration based on ROS2 95
5.2.2 Gravity compensation 97
5.3 Control method 99
5.3.1 Direct force control 99
5.3.2 Indirect force control 101
5.4 Peg-in-hole assembly strategy using compliance compensator 102
5.4.1 Coarse searching phase 104
5.4.2 Approaching phase 106
5.4.3 Fine searching phase 107
5.4.4 Alignment phase 108
5.4.5 Insertion phase 109
5.5 Experiment and result 109
5.6 Discussion on robotic assembly using compliance compensator 112
5.7 Chapter 5: Conclusion 114
Ⅵ. Conclusion 116
Ⅶ. References 118
요약문 123
- URI
-
https://scholar.dgist.ac.kr/handle/20.500.11750/59765
http://dgist.dcollection.net/common/orgView/200000892564
- Degree
- Doctor
- Publisher
- DGIST
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
