Detail View
Dynamic Simulation on Interface Morphology and Structural Deformation in Rechargeable Batteries
WEB OF SCIENCE
SCOPUS
- Title
- Dynamic Simulation on Interface Morphology and Structural Deformation in Rechargeable Batteries
- Alternative Title
- 이차전지에서의 계면 형상 및 구조 변형에 대한 동적 시뮬레이션
- DGIST Authors
- Suhwan Kim ; Hochun Lee ; Yong Min Lee
- Advisor
- 이호춘
- Co-Advisor(s)
- Yong Min Lee
- Issued Date
- 2025
- Awarded Date
- 2025-08-01
- Type
- Thesis
- Description
- Dynamic simulations, Morphological evolution, Metal batteries, Si anode, Separator design
- Abstract
-
본 논문은 차세대 에너지 저장 장치의 핵심 요소로 주목받고 있는 고에너지밀도 이차전지의 구조적 신뢰성 확보를 위한 동역학적 시뮬레이션 기반 분석 및 설계 전략을 제시한다. 고용량 금속계 음극재인 리튬과 실리콘은 기존 흑연 음극에 비해 우수한 이론 용량을 지니고 있으나, 충·방전 시 발생하는 뚜렷한 형태 변화와 구조적 불안정성으로 인해 상용화에 큰 제약을 받고 있다. 특히, 리튬 금속은 덴드라이트 형성과 고르지 않은 전착, 실리콘은 300% 이상의 부피 팽창과 이에 따른 입자 파괴 및 반복적인 고체 전해질 계면 형성으로 인해 활물질 손실, 계면 열화, 내부 단락 등의 안전 문제를 유발한다.
더보기
이에 본 연구에서는 시간에 따른 계면 및 기계적 응답을 포착할 수 있는 물리 기반의 동적 시뮬레이션 모델을 구축하여, 주요 변형 및 열화 메커니즘을 규명하고 소재 및 구조 설계를 위한 합리적인 기준을 제시하였다. 첫 번째로, 이온 전도도 및 전하 전달 반응속도 변화를 반영한 리튬 전착 모델을 통해 고전류 밀도 조건에서도 리튬 이온 고갈 없이 균일한 전착이 가능한 계면 설계 인자를 도출하였다.
이어서 실리콘 음극의 부피 팽창에 따른 폴리에틸렌 분리막의 기계적 변형 거동을 디지털 트윈 기반 시뮬레이션을 통해 분석하고, 압축 응력 분포 및 소성 변형 발생 기준에 기반하여 분리막 설계에 필요한 탄성계수 기준을 제안하였다.
마지막으로, 리튬 금속 전극에 의한 분리막 구조 손상을 동적 기계 모델링을 통해 정량적으로 분석하였다. 특히, 전착 유도에 따른 방향성 변형을 반영하여 계면 응력과 소성 영역의 확산을 도출하였으며, 이를 통해 분리막의 구조 안정성 확보를 위한 설계 기준을 수립하였다.
본 연구는 전기화학적 거동과 기계적 안정성 간의 상호작용을 정량적으로 규명하고, 차세대 금속 기반 이차전지의 성능 및 안전성 향상을 위한 기반 설계 전략을 제시함으로써 관련 분야의 이론적·실용적 기여를 도모한다.|The pursuit of high-energy-density batteries is essential for advancing next-generation energy storage technologies. High-capacity anode materials such as lithium (Li) and silicon (Si) exhibit exceptional theoretical capacities and are therefore regarded as promising alternatives to conventional graphite electrodes. However, their commercialization remains significantly hindered by pronounced morphological and structural instabilities that arise during electrochemical cycling, including dendritic Li growth and extensive volume expansion of Si particles. These phenomena result in loss of active material, compromised interfacial stability, and potential safety hazards.
In this thesis, physics-based dynamic simulation frameworks were presented to systematically elucidate the underlying failure mechanisms and to propose rational strategies for material and structural improvements by capturing the time-dependent interfacial and mechanical responses. First, a Li electrodeposition model incorporating variable interphase ionic conductivity and charge transfer kinetics was constructed. The simulation results demonstrated that optimized interphase properties could effectively suppress Li⁺ depletion and promote uniform plating, even under high current density conditions.
Subsequently, a digital twin approach was employed to investigate the mechanical deformation of polyethylene (PE) separators by substantial electrode volume expansion. The simulation incorporates actual lithiation-driven strain evolution to capture the mechanical interaction between the Si anode and the PE separator. Based on the spatial distribution of compressive stress and onset of structural failure, modulus- dependent criteria for mechanical stability are proposed, offering design guidelines for robust separator materials in high-capacity battery architectures.
Finally, the mechanical degradation of PE separators induced by Li metal electrodeposition was comprehensively investigated. By employing a dynamic simulation approach that emulates anisotropic deposition-driven strain, the model effectively elucidated the evolution of interfacial stress and the onset of plastic deformation within the separator. The results underscore the critical role of mechanical modulus for separator integrity, enabling the establishment of a quantitative design criterion that correlates interfacial strain localization to mechanical failure. These insights provide foundational guidance for the structural optimization of soft components in high-energy-density Li metal battery systems.
These results provide comprehensive insights into the interplay between electrochemical behaviors and mechanical stability in next-generation battery systems. The proposed models offer practical methodologies for predicting structural responses and contribute to the rational design of reliable and high-performance energy storage devices. Keywords: Dynamic simulations, Morphological evolution, Metal batteries, Si anode, Separator design.
- Table Of Contents
-
Abstract i
List of contents iii
List of figures v
List of tables x
Ⅰ. Introduction 1
1.1. Introduction of Next-generation Batteries 1
1.2. Challenges of High Capacity Anodes: Morphological Instability 2
1.3. Limitations of Conventional Simulation Approaches 2
1.4. Strategies to Solve Challenges and Limitations: Dynamic Simulations 3
IⅠ. Metal Electrodeposition Simulation for Understanding the Interphase Effect on Deposit Morphologies 4
2.1. Introduction 4
2.2. Simulation and Experimental Methods 6
2.2.1. Numerical Electrodeposition Simulation 6
2.2.2. Preparation of Au-coated Zn Metal Anode 9
2.2.3. Surface Characterization of Zn Metal Anodes 9
2.3. Results and Discussion 10
2.4. Conclusion 18
IⅠI. Digital Twin Simulation of Separator Collapse in Si-based Batteries: Mechano-structural Analysis and Design Strategies 19
3.1. Introduction 19
3.2. Simulation and Experimental Methods 21
3.2.1. Characterization 21
3.2.2. Operando Internal Force Measurement 21
3.2.3. Electrochemical Measurements 21
3.2.4. High-modulus (HM) Separator Fabrication 22
3.2.5. Digital Twin Structure Formation 22
3.2.6. Mechano-structural Simulations of Separators 23
3.3. Results and Discussion 24
3.4. Conclusion 35
IV. Digital Twin-driven Macroscopic Separator Deformation Analysis by Thick Li Electrodeposition 36
4.1. Introduction 36
4.2. Simulation Methods 37
4.2.1. Model Development 37
4.3. Results and Discussion 38
4.4. Conclusion 44
Reference 45
Summary in Korean 52
- URI
-
https://scholar.dgist.ac.kr/handle/20.500.11750/59788
http://dgist.dcollection.net/common/orgView/200000892542
- Degree
- Doctor
- Department
- Department of Energy Science and Engineering
- Publisher
- DGIST
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
