Detail View

Real Time GPU-Accelerated Ultrafast Flow Imaging: System Design, Validation and Potential Applications

Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.advisor 유재석 -
dc.contributor.author Muhammad Noman -
dc.date.accessioned 2026-01-23T11:02:08Z -
dc.date.available 2026-01-24T06:00:43Z -
dc.date.issued 2025 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59827 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000888299 -
dc.description Ultrafast ultrasound, GPU acceleration, flow imaging, eigenvalue decomposition, clutter filtering, real-time imaging, CUDA, beamforming -
dc.description.abstract Ultrasound Doppler imaging is essential for vascular flow assessment, yet conventional systems face critical limitations in frame rate and the tradeoff between global visualiza- tion and velocity quantification. We present a novel system integrating GPU-accelerated ultrafast Doppler with adaptive clutter filtering for real-time microvascular flow imag- ing. By leveraging plane-wave compounding and CUDA-optimized parallel processing on a Research ultrasound platform, our implementation achieves frame rates up to 8 Hz for flow imaging with complete signal processing - substantially faster than previous approaches. The system employs adaptive eigenvalue decomposition (EVD) for effec- tive tissue clutter filtering, optimized memory management strategies, and a parametric architecture adaptable to various transducers and imaging scenarios. Comprehensive val- idation shows reliable detection of slow flows in deep organs like human kidneys, while also demonstrating capability in shallow-depth mouse brain imaging with higher fre- quency transducers. Our architecture exploits GPU memory hierarchy through constant, texture, and shared memory utilization, alongside data type optimization and efficient kernel design. This paper presents the implementation details, optimization techniques, validation results, and potential clinical applications of a system that bridges the gap between research algorithms and clinical practice in real-time ultrafast flow imaging. Keywords: Ultrafast ultrasound, GPU acceleration, flow imaging, eigenvalue decompo- sition, clutter filtering, real-time imaging, CUDA, beamforming|초음파 도플러 영상은 혈류 평가에 필수적이지만, 기존 시스템은 프레임 속도의 한계와 전역적 시각화와 속도 정량화 간의 트레이드오프라는 중대한 제약을 안고 있습니다. 본 연구에서는 GPU 가속 기반 초고속 도플러 영상과 적응형 클러터 필터링을 통합한 실시간 미세혈관 영상 시스템을 제안합니다. 평면파 합성과 CUDA 최적화 병렬 처리를 리서치 초음파 플랫폼에 적용함으로써, 본 구현은 신호 처리 전 과정을 포함한 흐름 영상에서 최대 8 Hz의 프레임 속도를 달성하였으며, 이는 기존 방법보다 훨씬 빠른 성능입니다. 시스템은 조직 클러터 제거를 위해 적응형 고유값 분해(EVD)를 사용하고, 최적화된 메모리 관리 전략과 다양한 탐촉자 및 영상 조건에 적용 가능한 파라메트릭 구조를 갖추고 있습니다. 정량적 검증을 통해 본 시스템은 인간 신장과 같은 깊은 장기 내 느린 혈류도 신뢰성 있게 탐지할 수 있음을 보여주었으며, 고주파 탐촉자를 사용한 얕은 깊이의 생쥐 뇌 영상에서도 높은 성능을 입증하였습니다. 또한, 본 시스템은 상수 메모리, 텍스처 메모리, 공유 메모리 등 GPU 메모리 계층을 효과적으로 활용하고, 데이터 타입 최적화 및 효율적인 커널 설계를 통해 성능을 극대화하였습니다. 본 논문은 시스템의 구현 세부 사항, 최적화 기법, 검증 결과 및 임상 적용 가능성을 포괄적으로 다루며, 실시간 초고속 혈류 영상에서 연구용 알고리즘과 임상 적용 간의 격차를 해소하는 데 기여하고자 합니다. -
dc.description.tableofcontents 1. Introduction 1
1.1 Background and Motivation 1
1.1.1 Conventional Ultrasound Doppler Imaging Limitations 1
1.1.2 Emergence of Ultrafast Ultrasound Imaging 2
1.1.3 Adaptive Clutter Filtering Techniques 2
1.1.4 Computational Challenges in Ultrafast Ultrasound 3
1.2 Previous GPU-Accelerated Implementations 4
1.3 Research Objectives 5
1.4 Research Contributions 6
1.5 Thesis Organization 7
2. Related Works 9
2.1 Conventional and Ultrafast Ultrasound Imaging 9
2.2 Beamforming Algorithms for Ultrafast Imaging 10
2.3 Advanced Clutter Filtering for Flow Detection 11
2.4 GPU-Accelerated Ultrasound Implementations 12
2.5 Optimization Strategies for GPU Computing 13
3. Proposed Framework 15
3.1 Overview 15
3.2 Control Panel VSX 16
3.3 Processing RF Data with Subsequent Flow Image Reconstruction 18
3.4 Signal Processing Path for Real Time Color Ultrasound Imaging System 19
3.4.1 Transmit Event 19
3.4.2 Receive Start 20
3.4.3 Analog Front End 20
3.4.4 Digital Signal Chain (Configured for RF Output) 21
3.4.5 Local Memory and DMA 21
3.4.6 Receive Object Parameters 22
3.5 GPU-Accelerated Beamforming 22
3.6 Memory Optimization Strategies 24
3.6.1 Data Type Optimization 24
3.6.2 Memory Hierarchy Utilization 25
3.6.3 Data Transfer Optimization 25
3.7 GPU Accelerated Adaptive EVD-Based Clutter Filtering 26
3.8 CUDA Kernel Optimization 28
3.8.1 Thread Coalescing 28
3.8.2 Loop Unrolling 29
3.8.3 Register Optimization 29
3.8.4 Instruction-Level Optimization 29
3.8.5 Dynamic Thread Configuration 30
3.9 Inference and Visualization 30
4. Results and Validation 32
4.1 Experimental Setup 32
4.2 Computational Performance Analysis 36
4.2.1 GPU vs. CPU Performance Comparison 38
4.2.2 Memory Utilization Analysis 39
4.2.3 Kernel Performance Analysis 40
4.2.4 Quantitative Image Processing Performance 41
4.3 Validation Results 42
4.3.1 In Vivo Human Kidney Imaging 42
4.3.2 In Vivo Mouse Brain Imaging 43
4.4 Comparative System Performance 44
4.4.1 Precision Format Analysis for Flow Detection Metrics 44
4.5 Summary of Findings 48
4.5.1 Technical Impact Analysis 49
4.5.2 Clinical Significance 50
4.6 Conclusion 50
5. Discussion 52
5.1 Performance Comparison with Previous Work 52
5.1.1 Technical Distinctions from Previous Implementations 52
5.1.2 Clinical and Practical Significance 53
5.2 Clinical and Research Applications 54
5.2.1 Renal Perfusion Assessment 54
5.2.2 Neurovascular Imaging 55
5.2.3 Oncological Applications 55
5.2.4 Musculoskeletal and Inflammatory Assessment 56
5.3 Limitations and Future Work 56
5.3.1 Technical Limitations 56
5.3.2 Clinical Validation Requirements 58
5.3.3 Future Research Directions 58
6. Conclusion 60
6.1 Summary of Contributions 60
6.2 Impact on Ultrasound Imaging Technology 61
6.3 Clinical Significance 61
6.4 Future Outlook 62
7. Acknowledgements 63
-
dc.format.extent 66 -
dc.language eng -
dc.publisher DGIST -
dc.title Real Time GPU-Accelerated Ultrafast Flow Imaging: System Design, Validation and Potential Applications -
dc.type Thesis -
dc.identifier.doi 10.22677/THESIS.200000888299 -
dc.description.degree Master -
dc.contributor.department Department of Robotics and Mechatronics Engineering -
dc.contributor.coadvisor Hoe Joon Kim -
dc.date.awarded 2025-08-01 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RM SH531 202508 -
dc.date.accepted 2025-07-21 -
dc.contributor.alternativeDepartment 로봇및기계전자공학과 -
dc.subject.keyword Ultrafast ultrasound, GPU acceleration, flow imaging, eigenvalue decomposition, clutter filtering, real-time imaging, CUDA, beamforming -
dc.contributor.affiliatedAuthor Muhammad Noman -
dc.contributor.affiliatedAuthor Jaesok Yu -
dc.contributor.affiliatedAuthor Hoe Joon Kim -
dc.contributor.alternativeName 무함마드 노만 -
dc.contributor.alternativeName Jaesok Yu -
dc.contributor.alternativeName 김회준 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: