WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hyoung, Joo Eun | - |
| dc.contributor.author | Heo, Jong Wook | - |
| dc.contributor.author | Hong, Seung Tae | - |
| dc.date.accessioned | 2018-05-06T03:53:52Z | - |
| dc.date.available | 2018-05-06T03:53:52Z | - |
| dc.date.created | 2018-05-04 | - |
| dc.date.issued | 2018-06 | - |
| dc.identifier.issn | 0378-7753 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/6283 | - |
| dc.description.abstract | Calcium-ion intercalation-based batteries receive attention as one type of post lithium-ion battery because of their potential advantages in terms of cost and capacity. A birnessite-type manganese oxide, K0.31MnO2·0.25H2O, is characterized by a layered structure with interlayer distances of ∼7 Å. Here, we demonstrate for the first time the electrochemical Ca2+ ion intercalation capability of K-bir, and elucidate the calcium-ion storage mechanism. A reversible electrochemical reaction is observed in cyclic voltammograms and galvanostatic cycles. The initial specific discharge capacity is 153 mAh g−1 at 25.8 mA g−1 (0.1 C) in a 1 M Ca(NO3)2 aqueous electrolyte, with the average discharge voltage of 2.8 V (vs. Ca/Ca2+). X-ray diffraction, transmission electron microscopy, and elemental analyses confirm that Ca2+ ion transport is mainly responsible for the electrochemical reaction. A kinetic analysis using CVs with various scan rates indicates that the reaction mechanism can be described as a combined reaction of a surface-limited capacitance and a diffusion-controlled intercalation. In addition, 3D bond valence sum difference maps show the 2D network for conduction pathways of calcium ions in the structure. This work demonstrates that birnessite-type manganese oxide could be a potential cathode material for calcium-ion batteries. © 2018 Elsevier B.V. | - |
| dc.language | English | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.1016/j.jpowsour.2018.04.050 | - |
| dc.identifier.wosid | 000434748000016 | - |
| dc.identifier.scopusid | 2-s2.0-85045564040 | - |
| dc.identifier.bibliographicCitation | Hyoung, Joo Eun. (2018-06). Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite. Journal of Power Sources, 390, 127–133. doi: 10.1016/j.jpowsour.2018.04.050 | - |
| dc.description.isOpenAccess | FALSE | - |
| dc.subject.keywordAuthor | Potassium birnessite | - |
| dc.subject.keywordAuthor | Calcium-ion battery | - |
| dc.subject.keywordAuthor | Multivalent-ion battery | - |
| dc.subject.keywordAuthor | Post lithium-ion battery | - |
| dc.subject.keywordAuthor | Calcium intercalation | - |
| dc.subject.keywordPlus | MANGANESE OXIDE | - |
| dc.subject.keywordPlus | HIGH-PERFORMANCE | - |
| dc.subject.keywordPlus | CATHODE MATERIAL | - |
| dc.subject.keywordPlus | BATTERY CATHODE | - |
| dc.subject.keywordPlus | CRYSTAL WATER | - |
| dc.subject.keywordPlus | INTERCALATION | - |
| dc.subject.keywordPlus | SODIUM | - |
| dc.subject.keywordPlus | NA | - |
| dc.subject.keywordPlus | HEXACYANOFERRATE | - |
| dc.subject.keywordPlus | EXCHANGE | - |
| dc.citation.endPage | 133 | - |
| dc.citation.startPage | 127 | - |
| dc.citation.title | Journal of Power Sources | - |
| dc.citation.volume | 390 | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry; Electrochemistry; Energy & Fuels; Materials Science | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary | - |
| dc.type.docType | Article | - |